Studiare
In questa sezione è possibile reperire le informazioni riguardanti l'organizzazione pratica del corso, lo svolgimento delle attività didattiche, le opportunità formative e i contatti utili durante tutto il percorso di studi, fino al conseguimento del titolo finale.
Calendario accademico
Il calendario accademico riporta le scadenze, gli adempimenti e i periodi rilevanti per la componente studentesca, personale docente e personale dell'Università. Sono inoltre indicate le festività e le chiusure ufficiali dell'Ateneo.
L’anno accademico inizia il 1° ottobre e termina il 30 settembre dell'anno successivo.
Calendario didattico
Il calendario didattico indica i periodi di svolgimento delle attività formative, di sessioni d'esami, di laurea e di chiusura per le festività.
Periodo | Dal | Al |
---|---|---|
1° Q | 3-ott-2007 | 4-dic-2007 |
2° Q | 10-gen-2008 | 12-mar-2008 |
3° Q | 7-apr-2008 | 13-giu-2008 |
Sessione | Dal | Al |
---|---|---|
I Sessione esami | 10-dic-2007 | 9-gen-2008 |
II Sessione esami | 17-mar-2008 | 4-apr-2008 |
Sessione estiva | 23-giu-2008 | 31-lug-2008 |
Sessione autunnale | 1-set-2008 | 26-set-2008 |
Sessione | Dal | Al |
---|---|---|
Sessione straordinaria | 12-dic-2007 | 12-dic-2007 |
Sessione invernale | 13-mar-2008 | 13-mar-2008 |
Sessione estiva | 15-lug-2008 | 15-lug-2008 |
Sessione autunnale | 3-ott-2008 | 3-ott-2008 |
Periodo | Dal | Al |
---|---|---|
Festa di Ognissanti | 1-nov-2007 | 1-nov-2007 |
Festa dell'Immacolata Concezione | 8-dic-2007 | 8-dic-2007 |
Vacanze di Natale | 21-dic-2007 | 6-gen-2008 |
Vacanze di Pasqua | 21-mar-2008 | 25-mar-2008 |
Festa della Liberazione | 25-apr-2008 | 25-apr-2008 |
Festa del Lavoro | 1-mag-2008 | 1-mag-2008 |
Festa del Santo Patrono | 21-mag-2008 | 21-mag-2008 |
Festa della Repubblica | 2-giu-2008 | 2-giu-2008 |
Vacaze estive | 31-lug-2008 | 31-ago-2008 |
Calendario esami
Gli appelli d'esame sono gestiti dalla Unità Operativa Segreteria Corsi di Studio Scienze e Ingegneria.
Per consultazione e iscrizione agli appelli d'esame visita il sistema ESSE3.
Per problemi inerenti allo smarrimento della password di accesso ai servizi on-line si prega di rivolgersi al supporto informatico della Scuola o al servizio recupero credenziali
Docenti
Piano Didattico
Il piano didattico è l'elenco degli insegnamenti e delle altre attività formative che devono essere sostenute nel corso della propria carriera universitaria.
Selezionare il piano didattico in base all'anno accademico di iscrizione.
Insegnamenti | Crediti | TAF | SSD |
---|
Insegnamenti | Crediti | TAF | SSD |
---|
Insegnamenti | Crediti | TAF | SSD |
---|
Insegnamenti | Crediti | TAF | SSD |
---|
Insegnamenti | Crediti | TAF | SSD |
---|
1° Anno
Insegnamenti | Crediti | TAF | SSD |
---|
3° Anno
Insegnamenti | Crediti | TAF | SSD |
---|
4° Anno
Insegnamenti | Crediti | TAF | SSD |
---|
5° Anno
Insegnamenti | Crediti | TAF | SSD |
---|
Insegnamenti | Crediti | TAF | SSD |
---|
Legenda | Tipo Attività Formativa (TAF)
TAF (Tipologia Attività Formativa) Tutti gli insegnamenti e le attività sono classificate in diversi tipi di attività formativa, indicati da una lettera.
Teoria e tecniche del riconoscimento (2007/2008)
Codice insegnamento
4S00072
Crediti
5
L'insegnamento è organizzato come segue:
Obiettivi formativi
Modulo: Teoria
-------
Il corso intende fornire i fondamenti teorici e le metodologie principali relative all’analisi e riconoscimento automatico di dati di qualsiasi tipo, detti tipicamente pattern. Questa disciplina è alla base o completa molte altre discipline di più larga diffusione come l’elaborazione delle immagini, la visione, l’intelligenza artificiale, l’analisi di grosse quantità di dati, le basi di dati, e numerose altre.
Nel corso verrà data enfasi alle tecniche probabilistiche con particolar riferimento all’addestramento di sistemi volti al riconoscimento (anche di immagini, ma non solo) e alle reti neurali.
Le applicazioni che questa disciplina coinvolge sono molteplici. Tra queste ci sono le applicazioni legati all’elaborazione delle immagini e visione, data mining, la bioinformatica, analisi ed interpretazione di dati medicali e biologici (e.g., genomica, proteomica, sierologia, etc.), la biometria, l'imaging biomedicale, la videosorveglianza, la robotica, il riconoscimento della voce e numerose altre.
Modulo: Laboratorio
-------
Si veda la descrizione nella parte Teoria.
Programma
Modulo: Teoria
-------
* Introduzione: cos’è, a cosa serve, sistemi, applicazioni
* Riconoscimento e classificazione
* Estrazione e rappresentazione di caratteristiche (feature)
* Teoria della decisione di Bayes
* Stima dei parametri e metodi non parametrici
* Classificatori lineari, non lineari e funzioni discriminanti
* Cenni di Pattern Recognition di tipo sintattico
* Selezione di feature
* Reti neurali
* Metodi di classificazione non supervisionata (clustering)
* Metodi avanzati: Hidden Markov Models.
Il corso viene svolto in 32 ore di lezioni frontali e 12 ore di laboratorio. L'attività di laboratorio prevede la pratica e risoluzione di esercizi mediante l'uso di MATLAB volti all'apprendimento pratico e alla miglior comprensione della teoria svolta a lezione.
Modulo: Laboratorio
-------
Si veda la descrizione nella parte Teoria.
Modalità d'esame
Modulo: Teoria
-------
La verifica del profitto avverrà mediante un'attività di progetto e una breve prova orale. Il progetto riguarderà gli argomenti trattati a lezione con riferimento all'elaborazione delle immagini e visione, ma anche altre applicazioni potranno essere considerate. La prova orale verterà sui temi sviluppati a lezione e potrà essere sostituita da una prova scritta con brevi domande simili alla prova orale.
Il superamento della prova porta all'acquisizione di 5 crediti, ovvero di 1 unità didattica.
Modulo: Laboratorio
-------
Si veda la descrizione nella parte Teoria.
Tipologia di Attività formativa D e F
Insegnamenti non ancora inseriti
Prospettive
Avvisi degli insegnamenti e del corso di studio
Per la comunità studentesca
Se sei già iscritta/o a un corso di studio, puoi consultare tutti gli avvisi relativi al tuo corso di studi nella tua area riservata MyUnivr.
In questo portale potrai visualizzare informazioni, risorse e servizi utili che riguardano la tua carriera universitaria (libretto online, gestione della carriera Esse3, corsi e-learning, email istituzionale, modulistica di segreteria, procedure amministrative, ecc.).
Entra in MyUnivr con le tue credenziali GIA.
Ulteriori servizi
I servizi e le attività di orientamento sono pensati per fornire alle future matricole gli strumenti e le informazioni che consentano loro di compiere una scelta consapevole del corso di studi universitario.