Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

Academic calendar

The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.

Academic calendar

Course calendar

The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..

For the year 2008/2009 No calendar yet available

Exam calendar

Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.

Exam calendar

Should you have any doubts or questions, please check the Enrolment FAQs

Academic staff


Belussi Alberto +39 045 802 7980

Bombieri Nicola +39 045 802 7094

Bos Leonard Peter +39 045 802 7987

Carra Damiano +39 045 802 7059

Fontana Federico +39 045 802 7032

Fummi Franco 045 802 7994

Fusiello Andrea


Giacobazzi Roberto +39 045 802 7995

Gregorio Enrico 045 802 7937

Mariotto Gino +39 045 8027031

Masini Andrea 045 802 7922

Mastrogiacomo Elisa

Menegaz Gloria +39 045 802 7024

Merro Massimo 045 802 7992

Monti Francesca 045 802 7910

Pica Angelo

Pravadelli Graziano +39 045 802 7081

Segala Roberto 045 802 7997

Spoto Nicola Fausto +39 045 8027940

Todorov Velitchko

Vigano' Luca

Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University. Please select your Study Plan based on your enrolment year.

Training offer to be defined

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.

SPlacements in companies, public or private institutions and professional associations

Teaching code



Francesca Monti





Scientific Disciplinary Sector (SSD)



2nd Semester dal Mar 1, 2010 al Jun 15, 2010.

Learning outcomes

Aim of the course is to complete the knowledge of classical physics with the study of the laws of electromagnetism, wave phenomena and electromagnetic waves.


Electric field and potential: electric charge, Coulomb law, superposition principle, Gauss theorem. Determination of electric field and potential from a given charge distribution. Energy density in an electric field. Linear circuits, Kirchoff laws.

Magnetic field and electromagnetic induction: electric currents and magnetic fields, magnetic field from currents (the 1st Lapalce law) and from moving charges; magnetic force on currents (the 2nd Laplace law) and on moving charges (the Lorentz law). Application of the 1st Laplace law to the determination of magnetic fields from currents. Magnetic interaction between two wires. definition of Ampere and Coulomb. Ampere theorem and its application to the determination of magnetic fields from a given distribution of currents. Gauss theorem for magnetic fields.
Magnetic induction: fem as a consequence of the Lorentz force and as the derivative of the magnetic flux; fem from time dependent magnetic fields; circuitation of the electric field and derivative of the magnetic field flux: the Faraday-Henry law. Inductance and energy density in a magnetic field. The Ampere-Maxewll law and the four Maxwell equations (integral form). Gradient of a scalar field: electric field and potential. Divergence and curl of a vector field: differential Maxwell equations.

Waves and electromagnetic waves
Waves, impulse waves, wave trains, periodic waves; plane waves; wavelength, period and frequency of a periodic wave. Wave equation. Armonic waves: velocity and frequency, wavelength and wavenumber. Superposition principle. Armonic waves and Fourier analysis. Dispersion. Wave intensity and impedance of the medium. Mechanical waves. Electromagnetic waves: Maxwell equations and electromagnetic waves, electromagnetic waves equation. Energy and intensity. Polarization. Electromagnetic spectrum. Reflection and refraction of waves, transmitted and reflected intensities at normal incidence. Interference of waves, maxima and minima. Thin-film interference, Young experiment.Fraunhofer diffraction, diffraction minima, central maximum width, diffraction from a circular aperture, Airy disk and Rayleigh criterion, resolving power of lenses.

Brief introduction to quantum mechanics: quantization of light: black-body radiation, photoelectronic effect; quantization of matter: atomic emission and absorption spectra, Bohr’s atom, Stern-Gerlach experiment; wavlike behaviourof matter: De Broglie relation, uncertainty principle.

Reference texts
Author Title Publishing house Year ISBN Notes
M. Alonso, E.J. Finn Elementi di Fisica per l'Universita`: Vol. II - Onde e Campi. (Edizione 2) Masson S.p.A. 1982 8840809651
Eugene Hecht Fisica 2 (Edizione 1) Zanichelli 1999 88-08-0197

Examination Methods

Written exam: solution of some problems on electrostatics, magnetostatics, electromagnetic induction, electromagnetic waves and related phenomena.


Type D and Type F activities

Training offer to be defined

Career prospects

Module/Programme news

News for students

There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details.

Further services

I servizi e le attività di orientamento sono pensati per fornire alle future matricole gli strumenti e le informazioni che consentano loro di compiere una scelta consapevole del corso di studi universitario.


List of theses and work experience proposals

theses proposals Research area
Analisi e percezione dei segnali biometrici per l'interazione con robot AI, Robotics & Automatic Control - AI, Robotics & Automatic Control
Integrazione del simulatore del robot Nao con Oculus Rift AI, Robotics & Automatic Control - AI, Robotics & Automatic Control
Domain Adaptation Computer Science and Informatics: Informatics and information systems, computer science, scientific computing, intelligent systems - Computer graphics, computer vision, multi media, computer games
Domain Adaptation Computer Science and Informatics: Informatics and information systems, computer science, scientific computing, intelligent systems - Machine learning, statistical data processing and applications using signal processing (e.g. speech, image, video)
BS or MS theses in automated reasoning Computing Methodologies - ARTIFICIAL INTELLIGENCE
Domain Adaptation Computing Methodologies - IMAGE PROCESSING AND COMPUTER VISION
Domain Adaptation Computing methodologies - Machine learning
Dati geografici Information Systems - INFORMATION SYSTEMS APPLICATIONS
Analisi e percezione dei segnali biometrici per l'interazione con robot Robotics - Robotics
Integrazione del simulatore del robot Nao con Oculus Rift Robotics - Robotics
BS or MS theses in automated reasoning Theory of computation - Logic
BS or MS theses in automated reasoning Theory of computation - Semantics and reasoning
Proposte di tesi/collaborazione/stage in Intelligenza Artificiale Applicata Various topics
Proposte di Tesi/Stage/Progetto nell'ambito delle basi di dati/sistemi informativi Various topics


As stated in point 25 of the Teaching Regulations for the A.Y. 2021/2022, attendance at the course of study is not mandatory.
Please refer to the Crisis Unit's latest updates for the mode of teaching.

Career management

Area riservata studenti