Studiare
In questa sezione è possibile reperire le informazioni riguardanti l'organizzazione pratica del corso, lo svolgimento delle attività didattiche, le opportunità formative e i contatti utili durante tutto il percorso di studi, fino al conseguimento del titolo finale.
Piano Didattico
Queste informazioni sono destinate esclusivamente agli studenti e alle studentesse già iscritti a questo corso.Se sei un nuovo studente interessato all'immatricolazione, trovi le informazioni sul percorso di studi alla pagina del corso:
Laurea magistrale in Ingegneria e scienze informatiche - Immatricolazione dal 2025/2026Il piano didattico è l'elenco degli insegnamenti e delle altre attività formative che devono essere sostenute nel corso della propria carriera universitaria.
Selezionare il piano didattico in base all'anno accademico di iscrizione.
Legenda | Tipo Attività Formativa (TAF)
TAF (Tipologia Attività Formativa) Tutti gli insegnamenti e le attività sono classificate in diversi tipi di attività formativa, indicati da una lettera.
Teorie e tecniche del riconoscimento (2009/2010)
Codice insegnamento
4S02803
Docente
Coordinatore
Crediti
6
Offerto anche nei corsi:
- Teoria e tecniche del riconoscimento del corso Laurea specialistica in Sistemi intelligenti e multimediali
Lingua di erogazione
Italiano
Settore Scientifico Disciplinare (SSD)
ING-INF/05 - SISTEMI DI ELABORAZIONE DELLE INFORMAZIONI
Periodo
I semestre dal 1 ott 2009 al 31 gen 2010.
Obiettivi formativi
Il corso intende fornire i fondamenti teorici e le metodologie principali relative all’analisi e riconoscimento automatico di dati di qualsiasi tipo, detti tipicamente pattern. Questa disciplina è alla base o completa molte altre discipline di più larga diffusione come l’elaborazione delle immagini, la visione, l’intelligenza artificiale, l’analisi di grosse quantità di dati, le basi di dati, e numerose altre.
Nel corso verrà data enfasi alle tecniche probabilistiche e statistiche con particolar riferimento all’apprendimento automatico di sistemi volti al riconoscimento e la classificazione.
Le applicazioni che questa disciplina coinvolge sono molteplici. Tra queste ci sono le applicazioni legati all’elaborazione delle immagini e visione, data mining, la bioinformatica, analisi ed interpretazione di dati medicali e biologici (e.g., genomica, proteomica, etc.), la biometria, l'imaging biomedicale, la videosorveglianza, la robotica, il riconoscimento della voce e numerose altre.
Programma
* Introduzione: cos’è, a cosa serve, sistemi, applicazioni
* Riconoscimento e classificazione••
* Teoria della decisione di Bayes •
* Stima dei parametri
* Metodi non parametrici
* Classificatori lineari, non lineari e funzioni discriminanti
* Estrazione e selezione di feature, PCA e trasformata di Fisher
* Algoritmo Expectation-Maximization e misture di Gaussiane
* Metodi generativi e discriminativi
* Metodi Kernel e Support Vector Machines
* Reti neurali artificiali
* Hidden Markov Models
* Metodi di classificazione non supervisionata (clustering)
Il corso viene svolto in 32 ore di lezioni frontali e 24 ore di laboratorio. L'attività di laboratorio prevede la pratica e risoluzione di esercizi mediante l'uso di MATLAB volti all'apprendimento pratico e alla miglior comprensione della teoria svolta a lezione.
Modalità d'esame
La verifica del profitto avverrà mediante un'attività di progetto e una breve prova orale. Il progetto riguarderà gli argomenti trattati a lezione con riferimento all'elaborazione delle immagini e visione, ma anche altre applicazioni potranno essere considerate. La prova orale verterà sui temi sviluppati a lezione e potrà essere sostituita da una prova scritta con brevi domande simili alla prova orale.