Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

This information is intended exclusively for students already enrolled in this course.
If you are a new student interested in enrolling, you can find information about the course of study on the course page:

Laurea in Informatica - Enrollment from 2025/2026

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.

CURRICULUM TIPO:

2° Year   activated in the A.Y. 2010/2011

ModulesCreditsTAFSSD
12
B
INF/01
6
B
ING-INF/05
12
B
ING-INF/05

3° Year   activated in the A.Y. 2011/2012

ModulesCreditsTAFSSD
12
B
INF/01
activated in the A.Y. 2010/2011
ModulesCreditsTAFSSD
12
B
INF/01
6
B
ING-INF/05
12
B
ING-INF/05
activated in the A.Y. 2011/2012
ModulesCreditsTAFSSD
12
B
INF/01

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




S Placements in companies, public or private institutions and professional associations

Teaching code

4S00037

Credits

12

Coordinator

Alberto Belussi

Language

Italian

Scientific Disciplinary Sector (SSD)

INF/01 - INFORMATICS

The teaching is organized as follows:

Teoria

Credits

9

Period

I semestre, II semestre

Academic staff

Alberto Belussi

Laboratorio

Credits

3

Period

II semestre

Academic staff

Alberto Belussi

Learning outcomes

Theory I
-------
The first part of the course, called “Databases Theory”, has the aim to provide the student with the necessary concepts and methods for the design of a database and its applications. In particular, it will be focused on the methodologies for the conceptual and logical design of a database and for the successive database implementation on database systems. Moreover, some general techniques for the implementation of database systems will be presented and the fundamental characteristics of the query language SQL and of the relational algebra will be illustrated.


Theory II
-------
The second part of the course, called “Web and multimedia Applications”, has the aim to provide the student with the necessary concepts and methods for the design of data-intensive web applications. In particular, this module will be focused on a methodology for the logical design of a web application that interacts with a database system (DBMS).
Moreover, the approach Model-View-Controller (MVC-2 servlet centric) will be illustrated and applied to some examples. Finally, the main issues concerning the treatment of multimedia datasets in a DBMS will be presented.

LAB
-------
The “Lab” ("Laboratorio" in italian) of the course “Databases and WEB” has the aim to provide the student with the necessary concepts and methods for the implementation of a database and its applications. In particular, this module will be focused on the usage of a specific DBMS for the creation, management and manipulation of a database by means of SQL commands. Moreover, some general techniques for the implementation of web applications will be presented. In particular a MVC-2 architecture based on the Servlet and the Java Server Pages (JSP) technologies will be illustrated and used to show the implementation of some practical examples.

Program

Theory I
-------
* Introduction to database managemente systems (DBMS): architectures and functionalities of a DBMS. Phisical and logical data independence. Data models. Concepts of model, schema and instance of a database. Languages for database systems. DBMS vs. file system.
* Conceptual database design: conceptual data models. The Entity-Relationship model (ER). Elements of the ER model: entities, attributes, relationships, ISA hierarchies and cardinality constraints.
* Logical database design: logical data models, the relational data model. Elements of the relational data models: relations and integrity constraints. Mapping between conceptual schemas in ER model and logical schema in the relational model. Languages for data definition: SQL as DDL. Table creation and integrity constraints definition in SQL.
* Interacting with a database system: languages for the definition, querying and update of a database. The relational algebra. SQL: select-from-where statement, join in SQL, the GROUP BY and ORDER BY clauses, using subqueries. SQL for update: INSERT, DELETE and UPDATE statements. Views.
* The internal architecture of a DBMS. Transactions. Transactions properties. The concurrency control: schedules, view and conflict equivalence, the two-phase locking. Access methods (indexes): primary and secondary indexes, B-+tree, hashing based access methods.

Theory II
-------
The module is organized in 16 hours of lessons and exercises carried out during the second semester. The module will focuses on the logical design of a data-intensive web application and its implementation using: Postgresql, Servlet and Java Server Pages (JSP) technologies. Moreover, the issues concerning the treatment of multimedia datasets in a DBMS will be presented.
In particolar, the following arguments will be illustrated:
* Web Server: basic internet, basic HTML (form), basic HTTP.
* Information systems on the Web: techniques for the interaction between a DBMS and a HTTP server (CGI, Servlet, JSP); JDBC library and Java data beans; the architecture proposed by the MVC-2 approach.
* a methodology for the logical design of a data-intesive web application.
* XML
* features of multimedia data: compression techniques and indexing

LAB
-------
1. Introduction to DBMS PostgreSQL: connection to a database, table creation, insert, update and alter table.
2. PostgreSQL: integrity constraints, reactions to contraints violations.
3. PostgreSQL: simple SQL queries.
4. PostgreSQL: complex SQL queries.
5. HTML: structure of an HTML document, main tags, tables.
6. HTML: form.
7. Servlet Engine on an application server. Examples of simple servlets.
8. Servlet and JDBC. Connection to a DBMS PostgreSQL. Simple servlet of the interaction with a DBMS.
9. Java bean e servlet.
10. Java Server Pages (JSP)
11. JSP and servlet: a software architecture base on the Model View Controller approach.
12. Servlet/JSP and multimedia datasets.

Bibliography

Reference texts
Activity Author Title Publishing house Year ISBN Notes
Teoria P. Atzeni, S. Ceri, P. Fraternali, S. Paraboschi, R. Torlone Basi di dati: architetture e linee di evoluzione (Edizione 2) McGraw-Hill 2007 978-88-386-6370-3
Teoria P. ATZENI, S. CERI, S. PARABOSCHI, R. TORLONE Basi di dati- Modelli e linguaggi di interrogazione (Edizione 3) McGraw-Hill 2009 9788838666001
Teoria E. Baralis, A. Belussi, G. Psaila Basi di dati - Temi d'esame svolti (Edizione 1) Progetto Leonardo Società Editrice Esculapio Bologna 1999 B135655713

Examination Methods

Written tests.

Students with disabilities or specific learning disorders (SLD), who intend to request the adaptation of the exam, must follow the instructions given HERE

Teaching materials e documents