Studiare
In questa sezione è possibile reperire le informazioni riguardanti l'organizzazione pratica del corso, lo svolgimento delle attività didattiche, le opportunità formative e i contatti utili durante tutto il percorso di studi, fino al conseguimento del titolo finale.
Piano Didattico
Queste informazioni sono destinate esclusivamente agli studenti e alle studentesse già iscritti a questo corso.Se sei un nuovo studente interessato all'immatricolazione, trovi le informazioni sul percorso di studi alla pagina del corso:
Laurea in Matematica applicata - Immatricolazione dal 2025/2026Il piano didattico è l'elenco degli insegnamenti e delle altre attività formative che devono essere sostenute nel corso della propria carriera universitaria.
Selezionare il piano didattico in base all'anno accademico di iscrizione.
1° Anno
Insegnamenti | Crediti | TAF | SSD |
---|
2° Anno Attivato nell'A.A. 2013/2014
Insegnamenti | Crediti | TAF | SSD |
---|
Uno tra i seguenti due insegnamenti
3° Anno Attivato nell'A.A. 2014/2015
Insegnamenti | Crediti | TAF | SSD |
---|
Uno da 12 cfu o due da 6 cfu tra i seguenti tre insegnamenti
Insegnamenti | Crediti | TAF | SSD |
---|
Insegnamenti | Crediti | TAF | SSD |
---|
Uno tra i seguenti due insegnamenti
Insegnamenti | Crediti | TAF | SSD |
---|
Uno da 12 cfu o due da 6 cfu tra i seguenti tre insegnamenti
Insegnamenti | Crediti | TAF | SSD |
---|
Legenda | Tipo Attività Formativa (TAF)
TAF (Tipologia Attività Formativa) Tutti gli insegnamenti e le attività sono classificate in diversi tipi di attività formativa, indicati da una lettera.
Algebra (2013/2014)
Codice insegnamento
4S00022
Crediti
6
Lingua di erogazione
Italiano
Settore Scientifico Disciplinare (SSD)
MAT/02 - ALGEBRA
L'insegnamento è organizzato come segue:
teoria
esercitazioni 1
esercitazioni 2
Obiettivi formativi
Il corso è un'introduzione all'algebra moderna. Dopo aver presentato e discusso le principali strutture algebriche (gruppi, anelli e campi) si passa alla trattazione della teoria di Galois. Infine si discutono alcune applicazioni, in particolare alcuni risultati sulla risolubilità di un polinomio.
Programma
Sottogruppi, laterali, il gruppo quoziente. Gruppi ciclici. Il gruppo simmetrico. Gruppi risolubili. Anelli. Ideali. Omomorfismi. Domini a ideali principali. Domini a fattorizzazione unica. Anelli Euclidei. L'anello dei polinomi. Campi. Estensioni algebriche. Il campo di riducibilità completa di un polinomio. Estensioni normali. Estensioni separabili. Teoria di Galois.Teorema di Abel-Ruffini.
Prerequisiti: Algebra lineare.
Modalità d'esame
L'esame consiste in una prova scritta.
Il voto conseguito nella prova scritta può essere migliorato attraverso il voto ottenuto per lo svolgimento degli esercizi e / o attraverso una prova orale facoltativa. Per potersi presentare all'orale è necessario aver superato la prova scritta.
A metà semestre si terrà una prova parziale sugli argomenti della prima parte del corso. Gli studenti che avranno superato la prova parziale avranno la possibilità (solo durante il primo appello di febbraio) di completare la prova scritta svolgendo soltanto la parte riguardante gli argomenti della seconda metà del corso. La data della prova parziale sarà comunicata a lezione e pubblicata su questo sito quanto prima.