Studiare

In questa sezione è possibile reperire le informazioni riguardanti l'organizzazione pratica del corso, lo svolgimento delle attività didattiche, le opportunità formative e i contatti utili durante tutto il percorso di studi, fino al conseguimento del titolo finale.

Calendario accademico

Il calendario accademico riporta le scadenze, gli adempimenti e i periodi rilevanti per la componente studentesca, personale docente e personale dell'Università. Sono inoltre indicate le festività e le chiusure ufficiali dell'Ateneo.
L’anno accademico inizia il 1° ottobre e termina il 30 settembre dell'anno successivo.

Calendario accademico

Calendario didattico

Il calendario didattico indica i periodi di svolgimento delle attività formative, di sessioni d'esami, di laurea e di chiusura per le festività.

Definizione dei periodi di lezione
Periodo Dal Al
I sem. 1-ott-2014 30-gen-2015
II sem. 2-mar-2015 12-giu-2015
Sessioni degli esami
Sessione Dal Al
Sessione straordinaria appelli d'esame 2-feb-2015 27-feb-2015
Sessione estiva appelli d'esame 15-giu-2015 31-lug-2015
Sessione autunnale appelli d'esame 1-set-2015 30-set-2015
Sessioni di lauree
Sessione Dal Al
Sessione autunnale appello di laurea 2014 23-ott-2014 23-ott-2014
Sessione invernale appello di laurea 2015 17-mar-2015 17-mar-2015
Sessione estiva appello di laurea 2015 21-lug-2015 21-lug-2015
Sessione autunnale appello di laurea 2015 12-ott-2015 12-ott-2015
Sessione invernale appello di laurea 2016 15-mar-2016 15-mar-2016
Vacanze
Periodo Dal Al
Vacanze di Natale 22-dic-2014 6-gen-2015
Vacanze di Pasqua 2-apr-2015 7-apr-2015
Ricorrenza del Santo Patrono 21-mag-2015 21-mag-2015
Vacanze estive 10-ago-2015 16-ago-2015

Calendario esami

Gli appelli d'esame sono gestiti dalla Unità Operativa Segreteria Corsi di Studio Scienze e Ingegneria.
Per consultazione e iscrizione agli appelli d'esame visita il sistema ESSE3.
Per problemi inerenti allo smarrimento della password di accesso ai servizi on-line si prega di rivolgersi al supporto informatico della Scuola o al servizio recupero credenziali

Calendario esami

Per dubbi o domande leggi le risposte alle domande più frequenti F.A.Q. Iscrizione Esami

Docenti

A B C D F G L M O R S Z

Angeleri Lidia

symbol email lidia.angeleri@univr.it symbol phone-number +39 045 802 7911

Baldo Sisto

symbol email sisto.baldo@univr.it symbol phone-number +39 045 802 7935

Bos Leonard Peter

symbol email leonardpeter.bos@univr.it symbol phone-number +39 045 802 7987

Caliari Marco

symbol email marco.caliari@univr.it symbol phone-number +39 045 802 7904

Daldosso Nicola

symbol email nicola.daldosso@univr.it symbol phone-number +39 045 8027076 - 7828 (laboratorio)

Di Persio Luca

symbol email luca.dipersio@univr.it symbol phone-number +39 045 802 7968

Ferro Ruggero

symbol email ruggero.ferro@univr.it symbol phone-number +39 045 802 7909

Gregorio Enrico

symbol email Enrico.Gregorio@univr.it symbol phone-number +39 045 802 7937

Mantese Francesca

symbol email francesca.mantese@univr.it symbol phone-number +39 045 802 7978

Marigonda Antonio

symbol email antonio.marigonda@univr.it symbol phone-number +39 045 802 7809

Monti Francesca

symbol email francesca.monti@univr.it symbol phone-number +39 045 802 7910

Morato Laura Maria

symbol email laura.morato@univr.it symbol phone-number +39 045 802 7904

Orlandi Giandomenico

symbol email giandomenico.orlandi at univr.it symbol phone-number +39 045 802 7986

Rizzi Romeo

symbol email romeo.rizzi@univr.it symbol phone-number +39 045 802 7088

Schuster Peter Michael

symbol email peter.schuster@univr.it symbol phone-number +39 045 802 7029

Solitro Ugo

symbol email ugo.solitro@univr.it symbol phone-number +39 045 802 7977
Marco Squassina,  5 gennaio 2014

Squassina Marco

symbol email marco.squassina@univr.it symbol phone-number +39 045 802 7913

Zampieri Gaetano

symbol email gaetano.zampieri@univr.it symbol phone-number +39 045 802 7979

Piano Didattico

Il piano didattico è l'elenco degli insegnamenti e delle altre attività formative che devono essere sostenute nel corso della propria carriera universitaria.
Selezionare il piano didattico in base all'anno accademico di iscrizione.

CURRICULUM TIPO:

2° Anno   Attivato nell'A.A. 2015/2016

InsegnamentiCreditiTAFSSD
6
B
MAT/05
Attivato nell'A.A. 2015/2016
InsegnamentiCreditiTAFSSD
6
B
MAT/05
Insegnamenti Crediti TAF SSD
Tra gli anni: 1°- 2°
Un insegnamento a scelta
Tra gli anni: 1°- 2°
Altre attività formative
4
F
-

Legenda | Tipo Attività Formativa (TAF)

TAF (Tipologia Attività Formativa) Tutti gli insegnamenti e le attività sono classificate in diversi tipi di attività formativa, indicati da una lettera.




S Stage e tirocini presso imprese, enti pubblici o privati, ordini professionali

Codice insegnamento

4S001444

Crediti

6

Lingua di erogazione

Inglese en

Settore Scientifico Disciplinare (SSD)

MAT/06 - PROBABILITÀ E STATISTICA MATEMATICA

Periodo

II sem. dal 2-mar-2015 al 12-giu-2015.

Obiettivi formativi

In questo corso verranno introdotti gli elementi di base del calcolo stocastico di Ito e delle Equazioni differenziali stocastiche, con applicazioni al controllo stocastico ed estensioni a casi in dimensione infinita.

Programma

Processi stocastici e martingale, Moto Browniano, Integrale di Ito, formula di Ito, esistenza ed unicità delle soluzioni, Formula di Feinman-Kac, applicazioni alla teoria del controllo stocastico, integrale stocastico in dimensione infinita , equazione stocastica lineare di diffusione,equazione stocastica di reazione-diffusione, equazione stocastica dei mezzi porosi.




.

Modalità d'esame

Esame orale.

Le/gli studentesse/studenti con disabilità o disturbi specifici di apprendimento (DSA), che intendano richiedere l'adattamento della prova d'esame, devono seguire le indicazioni riportate QUI

Tipologia di Attività formativa D e F

Insegnamenti non ancora inseriti

Prospettive


Avvisi degli insegnamenti e del corso di studio

Per la comunità studentesca

Se sei già iscritta/o a un corso di studio, puoi consultare tutti gli avvisi relativi al tuo corso di studi nella tua area riservata MyUnivr.
In questo portale potrai visualizzare informazioni, risorse e servizi utili che riguardano la tua carriera universitaria (libretto online, gestione della carriera Esse3, corsi e-learning, email istituzionale, modulistica di segreteria, procedure amministrative, ecc.).
Entra in MyUnivr con le tue credenziali GIA: solo così potrai ricevere notifica di tutti gli avvisi dei tuoi docenti e della tua segreteria via mail e anche tramite l'app Univr.

Attività didattiche alternative

Per rendere il percorso di studi più flessibile, è possibile chiedere di sostituire alcuni insegnamenti con altri del medesimo corso di studio in Mathematics all'Università degli Studi di Verona (qualora gli obiettivi formativi degli insegnamenti che si intendono sostituire siano già stati raggiunti nella carriera pregressa), oppure con altri del corso di studio in Mathematics all'Università degli Studi di Trento.

Documenti


Modalità e sedi di frequenza

Come riportato nel regolamento didattico, la frequenza è in generale non obbligatoria, con la sola eccezione di alcune attività laboratoriali. Per queste sarà chiaramente indicato nella scheda del corrispondente insegnamento l'ammontare di ore per cui è richiesta la frequenza obbligatoria.

È consentita l'iscrizione a tempo parziale. Per saperne di più consulta la pagina Possibilità di iscrizione Part time.

Le attività didattiche del corso di studi si svolgono negli spazi dell’area di Scienze e Ingegneria che è composta dagli edifici di Ca’ Vignal 1, Ca’ Vignal 2, Ca’ Vignal 3 e Piramide, siti nel polo di Borgo Roma. 
Le lezioni frontali si tengono nelle aule di Ca’ Vignal 1, Ca’ Vignal 2, Ca’ Vignal 3 mentre le esercitazioni pratiche nei laboratori didattici dedicati alle varie attività.

Caratteristiche dei laboratori didattici a disposizione degli studenti

  • Laboratorio Alfa
    • 50 PC disposti in 13 file di tavoli
    • 1 PC per docente collegato a un videoproiettore 8K Ultra Alta Definizione per le esercitazioni
    • Configurazione PC: Intel Core i3-7100, 8GB RAM, 250GB SSD, monitor 24", Linux Ubuntu 24.04
    • Tutti i PC sono accessibili da persone in sedia a rotelle
  • Laboratorio Delta
    • 120 PC in 15 file di tavoli
    • 1 PC per docente collegato a due videoproiettori 4K per le esercitazioni
    • Configurazione PC: Intel Core i3-7100, 8GB RAM, 250GB SSD, monitor 24", Linux Ubuntu 24.04
    • Un PC è su un tavolo ad altezza variabile per garantire un accesso semplificato a persone in sedia a rotelle
  • Laboratorio Gamma (Cyberfisico)
    • 19 PC in 3 file di tavoli
    • 1 PC per docente con videoproiettore 4K
    • Configurazione PC: Intel Core i7-13700, 16GB RAM, 512GB SSD, monitor 24", Linux Ubuntu 24.04
  • Laboratorio VirtualLab
    • Accessibile via web: https://virtualab.univr.it
    • Emula i PC dei laboratori Alfa/Delta/Gamma
    • Usabile dalla rete universitaria o tramite VPN dall'esterno
    • Permette agli studenti di lavorare da remoto (es. biblioteca, casa) con le stesse funzionalità dei PC di laboratorio

Caratteristiche comuni:

  • Tutti i PC hanno la stessa suite di programmi usati negli insegnamenti di laboratorio
  • Ogni studente ha uno spazio disco personale di XXX GB, accessibile da qualsiasi PC
  • Gli studenti quindi possono usare qualsiasi PC in qualsiasi laboratorio senza limitazioni ritrovando sempre i documenti salvati precedentemente

Questa organizzazione dei laboratori offre flessibilità e continuità nel lavoro degli studenti, consentendo l'accesso ai propri documenti e all'ambiente di lavoro da qualsiasi postazione o da remoto.


Gestione carriere


Area riservata studenti


Prova Finale

Scadenziari e adempimenti amministrativi

Per gli scadenziari, gli adempimenti amministrativi e gli avvisi sulle sessioni di laurea, si rimanda al servizio Sessioni di laurea - Scienze e Ingegneria.

Necessità di attivare un tirocinio per tesi

Per stage finalizzati alla stesura della tesi di laurea, non è sempre necessaria l'attivazione di un tirocinio tramite l'Ufficio Stage. Per maggiori informazioni, consultare il documento dedicato, che si trova nella sezione "Documenti" del servizio dedicato agli stage e ai tirocini.

Regolamento della prova finale

La prova finale prevede la preparazione sotto la guida di un relatore di un elaborato scritto (tesi), che può consistere nella trattazione di un argomento teorico, o nella risoluzione di un problema specifico, o nella descrizione di un progetto di lavoro, o di un'esperienza fatta in un'azienda, in un laboratorio, in una scuola ecc. La tesi, preferibilmente redatta in TeX/LaTeX/AMSTeX e usando il pacchetto LaTeX Frontespizio, può essere inviata preliminarmente in formato elettronico ai membri della Commissione Valutazione Tesi e dovrà essere presentata, in duplice copia, al momento della discussione. La tesi potrà essere redatta anche in lingua inglese.

La discussione della tesi, che dovrà durare indicativamente tra i venti e i trenta minuti, avverrà davanti ad una Commissione Valutazione Tesi nominata dal Presidente del collegio Didattico di Matematica. ll Presidente della commissione è il professore di ruolo di più alto grado accademico. La Commissione Valutazione Tesi è composta da almeno tre Docenti tra cui possibilmente il Relatore. Ogni Commissione Valutazione Tesi potrà valutare più studenti in funzione del contenuto del lavoro da essi presentato. La discussione della tesi viene effettuata durante i trenta giorni precedenti la data stabilita per la sessione di Laurea, ne viene data adeguata comunicazione ed è aperta al pubblico.

La Commissione Valutazione Tesi attribuisce ad ogni studente un punteggio della prova finale che va da zero a cinque. La valutazione della prova finale si articola in maniera tale da tenere conto delle conoscenze acquisite dallo studente durante il lavoro di tesi, del loro grado di comprensione, dell'autonomia di giudizio, delle capacità dimostrate dallo studente di applicare dette conoscenze e di comunicare efficacemente e compiutamente l'insieme degli esiti del lavoro ed i principali risultati ottenuti (si vedano la Tabella 1 per tesi di laurea triennale e la Tabella 2 per tesi di laurea magistrale, in calce al presente regolamento). Il Presidente della Commissione Valutazione Tesi invia una relazione, firmata da tutti i componenti della Commissione, al Presidente della Commissione di Esame Finale indicando per ogni studente il punteggio attribuito per l'esame finale ed un eventuale breve giudizio.

La Commissione di Esame Finale, unica per tutti gli studenti di quella sessione di Laurea, viene nominata dal Presidente del Collegio Didattico di Matematica. Il Presidente della commissione è il professore di ruolo di più alto grado accademico. La Commissione di Esame Finale deve essere composta da un Presidente e almeno da altri quattro Commissari scelti tra i docenti dell'Ateneo.

La Commissione di Esame Finale determina per ogni studente il punteggio finale sommando la media, pesata rispetto ai relativi CFU, espressa in centodecimi, dei voti degli esami del piano di studi, escluse le attività in sovrannumero, con il punteggio della prova finale. Aggiunge inoltre il punteggio attribuito alla carriera dello studente, da zero a due (si veda la Tabella 3, in calce al presente regolamento). Il voto finale, espresso in centodecimi, si ottiene arrotondando all'intero più vicino (all'intero superiore, in caso di equidistanza) il punteggio ottenuto, senza eccedere 110 centodecimi e assegnando la lode solo con l'unanimità della Commissione di Esame Finale al candidato che abbia raggiunto i 110 centodecimi dopo l'arrotondamento.

La Commissione di Esame Finale procede alla proclamazione dei nuovi Laureati in Matematica Applicata o Laureati magistrali in Mathematics con una cerimonia pubblica ed ufficiale.

Documenti

Titolo Info File
File pdf 1. Come scrivere una tesi pdf, it, 31 KB, 02/11/22
File pdf 2. How to write a thesis pdf, en, 31 KB, 02/11/22
File pdf 5. Regolamento tesi pdf, it, 171 KB, 20/03/24

Elenco delle proposte di tesi

Proposte di tesi Area di ricerca
Controllo di sistemi multiagente Calculus of variations and optimal control; optimization - Hamilton-Jacobi theories, including dynamic programming
Controllo di sistemi multiagente Calculus of variations and optimal control; optimization - Manifolds
Controllo di sistemi multiagente Calculus of variations and optimal control; optimization - Optimality conditions
Formule di rappresentazione per gradienti generalizzati Mathematics - Analysis
Formule di rappresentazione per gradienti generalizzati Mathematics - Mathematics
Tesi assegnate a studenti di matematica Argomenti vari

Erasmus+ e altre esperienze all’estero