Studying at the University of Verona
Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.
Academic calendar
The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.
Course calendar
The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..
Period | From | To |
---|---|---|
primo semestre | Sep 14, 2015 | Jan 8, 2016 |
secondo semestre triennali | Feb 15, 2016 | Jun 1, 2016 |
Session | From | To |
---|---|---|
appelli sessione invernale | Jan 11, 2016 | Feb 13, 2016 |
prove intermedie secondo semestre | Apr 11, 2016 | Apr 15, 2016 |
appelli sessione estiva | Jun 6, 2016 | Jul 9, 2016 |
Appelli sessione autunnale | Aug 29, 2016 | Sep 16, 2016 |
prove intermedie primo semestre | Nov 2, 2016 | Nov 6, 2016 |
Session | From | To |
---|---|---|
sessione autunnale | Dec 11, 2015 | Dec 18, 2015 |
sessione invernale | Apr 6, 2016 | Apr 8, 2016 |
sessione estiva | Sep 13, 2016 | Sep 14, 2016 |
Period | From | To |
---|---|---|
vacanze natalizie | Dec 23, 2015 | Jan 5, 2016 |
vacanze pasquali | Mar 25, 2016 | Mar 29, 2016 |
vacanze estive | Aug 8, 2016 | Aug 27, 2016 |
Exam calendar
Exam dates and rounds are managed by the relevant Economics Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.
Academic staff
Borello Giuliana
giuliana.borello@univr.it 045 802 8493Study Plan
The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.
1° Year
Modules | Credits | TAF | SSD |
---|
2° Year activated in the A.Y. 2016/2017
Modules | Credits | TAF | SSD |
---|
3° Year activated in the A.Y. 2017/2018
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Legend | Type of training activity (TTA)
TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.
Statistics (2016/2017)
Teaching code
4S00121
Credits
9
Language
Italian
Scientific Disciplinary Sector (SSD)
SECS-S/01 - STATISTICS
The teaching is organized as follows:
lezione
esercitazione
Learning outcomes
The course aims at providing the basic techniques of descriptive statistics, probability and statistical inference for undergraduate students in business and economic sciences that have acquired the necessary preliminary mathematical notions. Overall, these techniques provide the necessary toolkit for quantitative analysis in the processes related to the observation of collective phenomena. From a practical point of view, these techniques are necessary for descriptive, interpretative and decision-making purposes for conducting statistical surveys related to economic and social phenomena. In addition to providing the necessary mathematical statistics apparatus, the course aims at providing conceptual tools for critical evaluation of the methodologies considered.
Program
Descriptive Statistics: data collection and classification; data types; frequency distributions; histograms and charts; measures of central tendency; arithmetic mean, geometric mean and harmonic mean; median; quartiles and percentiles; fixed and varying base indices; Laspayres and Paasche indices; variability and measures of dispersion; variance and standard deviation; coefficient of variation; moments; indices of skewness and kurtosis; multivariate distributions; scatterplots; covariance; variance of the sum of more variables; method of least squares; least-squares regression line; Pearson’s coefficient of linear correlation r; Cauchy-Schwarz inequality; R-square coefficiente; deviance residual and deviance explained; multivariate frequency distributions; conditional distributions; chi-squared index of dependence; index of association C; Simpson’s paradox.
Probability: events, probability spaces and event trees; combinatorics; conditional probability; independence; Bayes theorem; discrete and continuous random variables; distribution function; expectation and variance; Markov and Tchebycheff inequalities; discrete uniform distribution; Bernoulli distribution; binomial distribution; Poisson distribution; geometric distribution; continuous uniform distribution; normal distribution; exponential distribution; multivariate discrete random variables; joint probability distribution; marginal and conditional probability distributions; independence; covariance; correlation coefficient; linear combinations of random variables; average of random variables; weak law of large numbers; Bernoulli’s law of large numbers for relative frequencies; central limit theorem.
Inferential Statistics: sample statistics and sampling distributions; chi-square distribution; Student-t distribution; Snedecors-F distribution; point estimates and estimators; unbiasedness; efficiency; consistency; estimate of the mean, of a proportion and of a variance; confidence intervals for a mean, for a proportion (large samples) and for a variance; hypothesis testing; one and two tails tests for a mean, for a proportion (large samples) and for a variance; hypothesis testing for differences in two means, two proportions (large samples) and two variances.
The course consists of a series of lectures (56 hours) and of twelve exercise classes (24 hours).
All classes are essential to a proper understanding of the topics of the course.
The working language is Italian.
Examination Methods
.
Type D and Type F activities
Modules not yet included
Career prospects
Module/Programme news
News for students
There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details: only in this way will you be able to receive notification of all the notices from your teachers and your secretariat via email and also via the Univr app.
Graduation
List of thesis proposals
theses proposals | Research area |
---|---|
Proposte di tesi triennali | Various topics |
Student mentoring
Linguistic training CLA
Gestione carriere
Internships
The curriculum of the three-year degree courses (CdL) and master's degree courses (CdLM) in the economics area includes an internship as a compulsory training activity. Indeed, the internship is considered an appropriate tool for acquiring professional skills and abilities and for facilitating the choice of a future professional outlet that aligns with one's expectations, aptitudes, and aspirations. The student can acquire further competencies and interpersonal skills through practical experience in a work environment.