Studying at the University of Verona
Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.
Study Plan
This information is intended exclusively for students already enrolled in this course.If you are a new student interested in enrolling, you can find information about the course of study on the course page:
Laurea magistrale in Ingegneria e scienze informatiche - Enrollment from 2025/2026The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.
1° Year
Modules | Credits | TAF | SSD |
---|
2° Year activated in the A.Y. 2016/2017
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Due insegnamenti a scelta
Legend | Type of training activity (TTA)
TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.
The Physics of Integrated Devices (2016/2017)
Teaching code
4S00034
Teacher
Coordinator
Credits
6
Language
Italian
Scientific Disciplinary Sector (SSD)
FIS/01 - EXPERIMENTAL PHYSICS
Period
I sem. dal Oct 3, 2016 al Jan 31, 2017.
Learning outcomes
The course introduces the physical principles of operation of semiconductor devices and logic gates made by the planar integrated circuit technology.
The students will be able to analyze and evaluate the behavior of physical systems that realize a device or implement a logical pattern and will be able to compare the different systems in terms of the physical parameters that characterize their behavior.
Program
In order to follow properly the lectures it is recommended to have already acquired knowledge on classical physics (laws of motion, work, energy, electric field, electric potential).
Covered topics:
Elements of Classical Physics and Atomic Physics: work and energy, electric field and potential, electric current, Ohm's law, linear circuits resistivity and temperature dependence in metals and semiconductors, the Bohr model, the periodic table of the elements
Crystal structure and electrical properties of metals, semiconductors and doped semiconductors: gas model of electrons in metals as a link model in semiconductors, concept of gap, doped semiconductors, nods to the band theory, conduction current and dissemination
P-n junction: non-polarized and polarized junction, ddp contact, voltage-current characteristic in forward and reverse bias, junction diode, Zener diode, OR / AND gates to diodes, switching times
Bipolar junction transistor BJT, input curves and in common emitter configuration output, common base, inverter, transfer rates characteristic and noise margins, switching times
Transitor in the field of JFET and MOSFET effect, manufacturing techniques, output and transfer curves, MOSFET and CMOS inverters, transfer characteristics, noise margins, switching times
Elementary digital circuits in MOS technology, CMOS, bipolar, ECL: NOR and NAND MOSFET and CMOS, NAND DTL, HTL, TTL, OR / NOR ECL
Comparison of logic families: propagation delay, power dissipation, fan-out, noise margins
Sensors and Applications
Examination Methods
The final test will be an oral exams on the topics covered in the lectures.