Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

Academic calendar

The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.

Academic calendar

Course calendar

The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..

Definition of lesson periods
Period From To
I sem. Oct 3, 2016 Jan 31, 2017
II sem. Mar 1, 2017 Jun 9, 2017
Exam sessions
Session From To
Sessione invernale Appelli d'esame Feb 1, 2017 Feb 28, 2017
Sessione estiva Appelli d'esame Jun 12, 2017 Jul 31, 2017
Sessione autunnale Appelli d'esame Sep 1, 2017 Sep 29, 2017
Degree sessions
Session From To
Sessione estiva Appelli di Laurea Jul 20, 2017 Jul 20, 2017
Sessione autunnale Appelli di laurea Nov 23, 2017 Nov 23, 2017
Sessione invernale Appelli di laurea Mar 22, 2018 Mar 22, 2018
Holidays
Period From To
Festa di Ognissanti Nov 1, 2016 Nov 1, 2016
Festa dell'Immacolata Concezione Dec 8, 2016 Dec 8, 2016
Vacanze di Natale Dec 23, 2016 Jan 8, 2017
Vacanze di Pasqua Apr 14, 2017 Apr 18, 2017
Anniversario della Liberazione Apr 25, 2017 Apr 25, 2017
Festa del Lavoro May 1, 2017 May 1, 2017
Festa della Repubblica Jun 2, 2017 Jun 2, 2017
Vacanze estive Aug 8, 2017 Aug 20, 2017

Exam calendar

Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.

Exam calendar

Should you have any doubts or questions, please check the Enrollment FAQs

Academic staff

A B C D G M O R S Z

Albi Giacomo

symbol email giacomo.albi@univr.it symbol phone-number +39 045 802 7913

Angeleri Lidia

symbol email lidia.angeleri@univr.it symbol phone-number 045 802 7911

Baldo Sisto

symbol email sisto.baldo@univr.it symbol phone-number 0458027935

Bos Leonard Peter

symbol email leonardpeter.bos@univr.it symbol phone-number +39 045 802 7987

Boscaini Maurizio

symbol email maurizio.boscaini@univr.it

Busato Federico

symbol email federico.busato@univr.it
Foto,  January 12, 2015

Caliari Marco

symbol email marco.caliari@univr.it symbol phone-number +39 045 802 7904
Foto,  March 10, 2017

Cordoni Francesco Giuseppe

symbol email francescogiuseppe.cordoni@univr.it

Daffara Claudia

symbol email claudia.daffara@univr.it symbol phone-number +39 045 802 7942

Daldosso Nicola

symbol email nicola.daldosso@univr.it symbol phone-number +39 045 8027076 - 7828 (laboratorio)

De Sinopoli Francesco

symbol email francesco.desinopoli@univr.it symbol phone-number 045 842 5450

Di Persio Luca

symbol email luca.dipersio@univr.it symbol phone-number +39 045 802 7968

Gregorio Enrico

symbol email Enrico.Gregorio@univr.it symbol phone-number 045 802 7937
foto,  June 25, 2020

Magazzini Laura

symbol email laura.magazzini@univr.it symbol phone-number 045 8028525

Malachini Luigi

symbol email luigi.malachini@univr.it symbol phone-number 045 8054933

Mantese Francesca

symbol email francesca.mantese@univr.it

Marigonda Antonio

symbol email antonio.marigonda@univr.it symbol phone-number +39 045 802 7809

Mariotto Gino

symbol email gino.mariotto@univr.it

Mariutti Gianpaolo

symbol email gianpaolo.mariutti@univr.it symbol phone-number +390458028241
Foto,  October 5, 2015

Mazzuoccolo Giuseppe

symbol email giuseppe.mazzuoccolo@univr.it symbol phone-number +39 0458027838

Orlandi Giandomenico

symbol email giandomenico.orlandi at univr.it symbol phone-number 045 802 7986

Rizzi Romeo

symbol email romeo.rizzi@univr.it symbol phone-number +39 045 8027088
RossiFrancesco

Rossi Francesco

Schuster Peter Michael

symbol email peter.schuster@univr.it symbol phone-number +39 045 802 7029

Solitro Ugo

symbol email ugo.solitro@univr.it symbol phone-number +39 045 802 7977
ZiniGiovanni

Zini Giovanni

Zuccher Simone

symbol email simone.zuccher@univr.it

Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.

CURRICULUM TIPO:

2° Year   activated in the A.Y. 2017/2018

ModulesCreditsTAFSSD
6
A
MAT/02
6
B
MAT/03
6
C
SECS-P/01
6
C
SECS-P/01
6
B
MAT/06

3° Year   activated in the A.Y. 2018/2019

ModulesCreditsTAFSSD
6
C
SECS-P/05
activated in the A.Y. 2017/2018
ModulesCreditsTAFSSD
6
A
MAT/02
6
B
MAT/03
6
C
SECS-P/01
6
C
SECS-P/01
6
B
MAT/06
activated in the A.Y. 2018/2019
ModulesCreditsTAFSSD
6
C
SECS-P/05
Modules Credits TAF SSD
Between the years: 1°- 2°- 3°
Between the years: 1°- 2°- 3°
Altre attività formative
6
F
-

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




S Placements in companies, public or private institutions and professional associations

Teaching code

4S00031

Credits

12

Coordinator

Sisto Baldo

Language

Italian

Scientific Disciplinary Sector (SSD)

MAT/05 - MATHEMATICAL ANALYSIS

The teaching is organized as follows:

Teoria 2

Credits

5

Period

I sem.

Academic staff

Giandomenico Orlandi

Esercitazioni

Credits

4

Period

I sem.

Academic staff

Antonio Marigonda

Teoria 1

Credits

3

Period

I sem.

Academic staff

Sisto Baldo

Learning outcomes

Topics treated in this course are: Calculus for functions of several variables, sequences and series of functions, ordinary differential equations, Lebesgue measure and integral. Emphasis will be given to examples and applications.

At the end of the course, students must possess adequate skills of synthesis and abstraction. They must recognize and produce rigorous proofs. They must be able to formalizie and solve moderately difficult problems on the arguments of the course.

Program

i) Calculus in several variables. Neighborhoods in several variables, continuity in several variables, directional derivatives, differential of functions in several variables, Theorem of Total Differential, gradient of scalar functions, Jacobian matrix for vector-valued functions, level curves of scalar functions. Parametrized surfaces, tangent and normal vectors, changes of coordinates. Higher order derivatives and differentials, Hessian matrix, Schwarz's Theorem, Taylor's Series.

(ii) Optimization problems for functions in several variables. Critical points, free optimization, constrained optimization, Lagrange's Multiplier Theorem, Implicit and inverse function theorem, Contraction Principle.

(iii) Integral of functions in several variables. Fubini and Tonelli theorems, integral on curves, change of variables formula.

(iv) Integral of scalar function on surfaces, vector fields, conservatice vector fields, scalar potentials, curl and divergence of a vector fields, introduction to differential forms, closed and exact forms, Poincare lemma, Gauss-Green formulas.

(v) Flux through surfaces, Stokes' Theorem, Divergence Theorem

(vi) Introduction to metric spaces and normed spaces, spaces of functions, sequence of functions, uniform convergence, function series, total convergence, derivation and integration of a series of functions.

(vii) Introduction to Lebesgue's Measure Theory. Measurable sets and functions, stability of measurable functions, simple functions, approximation results, Lebesgue integral. Monotone Convergence Theorem, Fatou's Lemma, Dominated convergence Theorem and their consequences.

(viii) Ordinary differential equation, existence and uniqueness results, Cauchy-Lipschitz's Theorem. Extension of a solution, maximal solution, existence and uniqueness results for systems of ODE, linear ODE of order n, Variation of the constants method,
other resolutive formulas.

(ix) Fourier's series for periodic functions, convergence results, application to solutions of some PDE.

Bibliography

Reference texts
Activity Author Title Publishing house Year ISBN Notes
Teoria 2 Robert A. Adams, Christofer Essex Calcolo Differenziale 2 - Funzioni di più variabili (Edizione 5) AMBROSIANA 2014 978-8808-18468-9
Teoria 2 James Stewart Calcolo: funzioni di più variabili (Edizione 3) Apogeo 2002 8873037488
Teoria 2 Tom M. Apostol Calcolo, vol. 3 Boringhieri   xx
Teoria 2 Kenneth R. Davidson, Allan P. Donsig Real Analysis and applications: theory in practice Springer 2010 978-0443042089
Esercitazioni Giuseppe De Marco Analisi 2. Secondo corso di analisi matematica per l'università Lampi di Stampa (Decibel Zanichelli) 1999 8848800378
Esercitazioni G. De Marco Analisi due Zanichelli (decibel) 1999 88-08-01215-8
Esercitazioni M. Conti, D. L. Ferrario, S. Terracini, G. Verzini Analisi matematica. Dal calcolo all'analisi, Vol. 1 (Edizione 1) Apogeo 2006 88-503-221
Esercitazioni V. Barutello, M. Conti, D.L. Ferrario, S. Terracini, G. Verzini Analisi matematica. Dal calcolo all'analisi Vol. 2 Apogeo 2007 88-503-242
Esercitazioni Conti M., Ferrario D.L., Terracini S,. Verzini G. Analisi matematica. Dal calcolo all'analisi. Volume 1. Apogeo  
Esercitazioni Conti F. et al. Analisi Matematica, teoria e applicazioni McGraw-Hill, Milano 2001 8838660026
Esercitazioni Giuseppe de Marco Analisi uno. Primo corso di analisi matematica. Teoria ed esercizi Zanichelli 1996 8808243125
Esercitazioni Giuseppe de Marco Analisi Zero, presentazione rigorosa di alcuni concetti base di matematica per i corsi universitari (Edizione 3) Edizione Decibel/Zanichelli 1997 978-8808-19831-0
Esercitazioni M. Squassina, S. Zuccher Introduzione all'Analisi Qualitativa delle Equazioni Differenziali Ordinarie. 332 pagine, 365 figure. Apogeo Editore 2008 9788850310845
Teoria 1 Giuseppe De Marco Analisi 2. Secondo corso di analisi matematica per l'università Lampi di Stampa (Decibel Zanichelli) 1999 8848800378
Teoria 1 V. Barutello, M. Conti, D.L. Ferrario, S. Terracini, G. Verzini Analisi matematica. Dal calcolo all'analisi Vol. 2 Apogeo 2007 88-503-242
Teoria 1 Adams, R. Calcolo differenziale (vol. 2). Funzioni di più variabili. Ambrosiana 2003 8840812687

Examination Methods

The final exam consists of a written test followed, in case of a positive result, by an oral test. The written test consists of some exercises on the program: students are exonerated from the first part of the test if they pass a mid-term test at the beginning of december. The written test evaluates the ability of students at solving problems pertaining to the syllabus of the course, and also their skills in the analysis, synthesis and abstraction of questions stated either in the natural language or in the specific language of mathematics. The written test is graded on a scale from 0 to 30 points (best), with a pass mark of 18/30..
The oral test will concentrate mainly but not exclusively on the theory. It aims at verifying the ability of students at constructing correct and rigorous proofs and their skills in analysis, synthesis and abstraction. The oral exam is graded on a scale from -5 to +5 point, which are added to the marks earned in the written test.

Students with disabilities or specific learning disorders (SLD), who intend to request the adaptation of the exam, must follow the instructions given HERE

Teaching materials e documents

Type D and Type F activities

Modules not yet included

Career prospects


Module/Programme news

News for students

There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details: only in this way will you be able to receive notification of all the notices from your teachers and your secretariat via email and soon also via the Univr app.

Graduation

For schedules, administrative requirements and notices on graduation sessions, please refer to the Graduation Sessions - Science and Engineering service.

Documents

Title Info File
File pdf 1. Come scrivere una tesi pdf, it, 31 KB, 29/07/21
File pdf 2. How to write a thesis pdf, it, 31 KB, 29/07/21
File pdf 5. Regolamento tesi (valido da luglio 2022) pdf, it, 171 KB, 17/02/22

List of theses and work experience proposals

theses proposals Research area
Formule di rappresentazione per gradienti generalizzati Mathematics - Analysis
Formule di rappresentazione per gradienti generalizzati Mathematics - Mathematics
Proposte Tesi A. Gnoatto Various topics
Mathematics Bachelor and Master thesis titles Various topics
THESIS_1: Sensors and Actuators for Applications in Micro-Robotics and Robotic Surgery Various topics
THESIS_2: Force Feedback and Haptics in the Da Vinci Robot: study, analysis, and future perspectives Various topics
THESIS_3: Cable-Driven Systems in the Da Vinci Robotic Tools: study, analysis and optimization Various topics
Stage Research area
Internship proposals for students in mathematics Various topics

Attendance

As stated in the Teaching Regulations for the A.Y. 2022/2023, except for specific practical or lab activities, attendance is not mandatory. Regarding these activities, please see the web page of each module for information on the number of hours that must be attended on-site.
Please refer to the Crisis Unit's latest updates for the mode of teaching.


Career management


Student login and resources


Erasmus+ and other experiences abroad