Studying at the University of Verona

A.A. 2017/2018

Academic calendar

Il calendario accademico riporta le scadenze, gli adempimenti e i periodi rilevanti per la componente studentesca, personale docente e personale dell'Università. Sono inoltre indicate le festività e le chiusure ufficiali dell'Ateneo.
L’anno accademico inizia il 1° ottobre e termina il 30 settembre dell'anno successivo.

Academic calendar

Course calendar

The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..

Definition of lesson periods
Period From To
I - II semestre Oct 2, 2017 Jun 15, 2018
I sem. Oct 2, 2017 Jan 31, 2018
II sem. Mar 1, 2018 Jun 15, 2018
Exam sessions
Session From To
Sessione invernale d'esami Feb 1, 2018 Feb 28, 2018
Sessione estiva d'esame Jun 18, 2018 Jul 31, 2018
Sessione autunnale d'esame Sep 3, 2018 Sep 28, 2018
Degree sessions
Session From To
Sessione di laurea estiva Jul 23, 2018 Jul 23, 2018
Sessione di laurea autunnale Oct 17, 2018 Oct 17, 2018
Sessione autunnale di laurea Nov 23, 2018 Nov 23, 2018
Sessione di laurea invernale Mar 22, 2019 Mar 22, 2019
Holidays
Period From To
Christmas break Dec 22, 2017 Jan 7, 2018
Easter break Mar 30, 2018 Apr 3, 2018
Patron Saint Day May 21, 2018 May 21, 2018
VACANZE ESTIVE Aug 6, 2018 Aug 19, 2018

Exam calendar

The exam roll calls are centrally administered by the operational unit  Science and Engineering Teaching and Student Services Unit
Exam Session Calendar and Roll call enrolment sistema ESSE3. If you forget your password to the online services, please contact the technical office in your Faculty or to the service credential recovery.

Exam calendar

Per dubbi o domande Read the answers to the more serious and frequent questions - F.A.Q. Examination enrolment

Academic staff

A B C D G M O R S Z

Albi Giacomo

giacomo.albi@univr.it +39 045 802 7913

Angeleri Lidia

lidia.angeleri@univr.it 045 802 7911

Baldo Sisto

sisto.baldo@univr.it 045 802 7935

Bos Leonard Peter

leonardpeter.bos@univr.it +39 045 802 7987

Boscaini Maurizio

maurizio.boscaini@univr.it

Busato Federico

federico.busato@univr.it

Caliari Marco

marco.caliari@univr.it +39 045 802 7904

Cordoni Francesco Giuseppe

francescogiuseppe.cordoni@univr.it

Daffara Claudia

claudia.daffara@univr.it +39 045 802 7942

Daldosso Nicola

nicola.daldosso@univr.it +39 045 8027076 - 7828 (laboratorio)

De Sinopoli Francesco

francesco.desinopoli@univr.it 045 842 5450

Di Persio Luca

luca.dipersio@univr.it +39 045 802 7968

Gregorio Enrico

Enrico.Gregorio@univr.it 045 802 7937

Magazzini Laura

laura.magazzini@univr.it 045 8028525

Malachini Luigi

luigi.malachini@univr.it 045 8054933

Mantese Francesca

francesca.mantese@univr.it +39 045 802 7978

Marigonda Antonio

antonio.marigonda@univr.it +39 045 802 7809

Mariotto Gino

gino.mariotto@univr.it +39 045 8027031

Mariutti Gianpaolo

gianpaolo.mariutti@univr.it 045 802 8241

Mazzuoccolo Giuseppe

giuseppe.mazzuoccolo@univr.it +39 0458027838

Orlandi Giandomenico

giandomenico.orlandi at univr.it 045 802 7986

Rizzi Romeo

romeo.rizzi@univr.it +39 045 8027088

Rossi Francesco

Schuster Peter Michael

peter.schuster@univr.it +39 045 802 7029

Solitro Ugo

ugo.solitro@univr.it +39 045 802 7977

Zuccher Simone

simone.zuccher@univr.it

Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University. Please select your Study Plan based on your enrolment year.

CURRICULUM TIPO:
TeachingsCreditsTAFSSD
6
A
(MAT/02)
6
B
(MAT/03)
6
C
(SECS-P/01)
6
C
(SECS-P/01)
6
B
(MAT/06)
TeachingsCreditsTAFSSD
6
C
(SECS-P/05)
12
C
(SECS-S/06)
Final exam
6
E
-

2° Anno

TeachingsCreditsTAFSSD
6
A
(MAT/02)
6
B
(MAT/03)
6
C
(SECS-P/01)
6
C
(SECS-P/01)
6
B
(MAT/06)

3° Anno

TeachingsCreditsTAFSSD
6
C
(SECS-P/05)
12
C
(SECS-S/06)
Final exam
6
E
-
Teachings Credits TAF SSD
Between the years: 1°- 2°- 3°
Between the years: 1°- 2°- 3°
Other activitites
6
F
-

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




SPlacements in companies, public or private institutions and professional associations

Teaching code

4S004792

Coordinatore

Leonard Peter Bos

Credits

6

Scientific Disciplinary Sector (SSD)

MAT/08 - NUMERICAL ANALYSIS

Language of instruction

Italian

Period

II sem. dal Mar 1, 2018 al Jun 15, 2018.

Learning outcomes

The course will discuss, from both the analytic and computational points of view, the principal basic numerical methods for the solution of nonlinear equations, linear systems, polynomial data fitting and numerical quadrature. The course has a Laboratory component where the methods studied will be implemented using the MATLAB programming platform (using either the official Matlab from Mathworks or else the open source version GNU OCTAVE). At the end of the course the student will be expected to demonstrate that s/he has attained a level of competence in the computational and computer aspects of the course subject, as well as the ability to recognize which algorithms are appropriate for basic problems of numerical analysis.

Program

Programme

The course will discuss the following topics:

Methods for finding zeros of functions (bisection, secant, Newton and its variants)
Floating point numbers and error theory
Methods for solving linear systems (conditioning, Gaussian elimination, LU factorization, Cholesky factorization, matrix norms)
Polynomial interpolation and piecewise linear interpolation
Quadrature rules, simple and composite (Rectangle Rule, Trapezoidal Rule, Simpson’s Rule, Romberg extrapolation)

It is expected that there will be a tutor to help with the correction of assigned exercises and with the Laboratory sessions.

Bibliografia

Reference texts
Author Title Publishing house Year ISBN Notes
E. Süli, D. F. Mayers An Introduction to Numerical Analysis (Edizione 1) Cambridge University Press 2003
S. De Marchi Appunti di Calcolo Numerico (Edizione 1) Societa Edirice Esculapio 2011 978-88-7488-473-5
A. Quarteroni, F. Saleri Calcolo Scientifico, Esercizi e problemi risolti con MATLAB e OCTAVE Springer 2008
J. Stoer, R. Bulrisch Introduction to Numerical Analysis (Edizione 1) Springer 1993

Examination Methods

The purpose of the exam is to see if the student is able to recall and reproduce the theory of basic Numerical Analysis and knows how to use Computer resources for possible further investigation. Moreover, the student must show that s/he knows how to program in the specific software introduced during the course. The exam will consist of two parts. The first part will be held in a Laboratory where the student will be given two hours to individually implement the numerical methods necessary for the solution of the assigned questions. The questions will be based on the entire course material. A pass will be given for a mark of 18/30 or higher. To be admitted to the second part of the exam, the oral, it is required to have first passed the written part. Marks for the written part will remain valid until, and not after, the beginning of the following semester. The oral exam will be based on the topics discussed during the classroom lectures. The final course mark will be the average of the marks for the two parts of the exam.

Tipologia di Attività formativa D e F

Academic year

Course not yet included

Career prospects


Avvisi degli insegnamenti e del corso di studio

Per la comunità studentesca

Se sei già iscritta/o a un corso di studio, puoi consultare tutti gli avvisi relativi al tuo corso di studi nella tua area riservata MyUnivr.
In questo portale potrai visualizzare informazioni, risorse e servizi utili che riguardano la tua carriera universitaria (libretto online, gestione della carriera Esse3, corsi e-learning, email istituzionale, modulistica di segreteria, procedure amministrative, ecc.).
Entra in MyUnivr con le tue credenziali GIA.

Graduation

List of theses and work experience proposals

theses proposals Research area
Formule di rappresentazione per gradienti generalizzati Mathematics - Analysis
Formule di rappresentazione per gradienti generalizzati Mathematics - Mathematics
Mathematics Bachelor and Master thesis titles Various topics
Stage Research area
Internship proposals for students in mathematics Various topics

University Language Centre - CLA


Further services

I servizi e le attività di orientamento sono pensati per fornire alle future matricole gli strumenti e le informazioni che consentano loro di compiere una scelta consapevole del corso di studi universitario.