Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

Academic calendar

The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.

Academic calendar

Course calendar

The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..

Definition of lesson periods
Period From To
I sem. Oct 3, 2016 Jan 31, 2017
II sem. Mar 1, 2017 Jun 9, 2017
Exam sessions
Session From To
Sessione invernale Appelli d'esame Feb 1, 2017 Feb 28, 2017
Sessione estiva Appelli d'esame Jun 12, 2017 Jul 31, 2017
Sessione autunnale Appelli d'esame Sep 1, 2017 Sep 29, 2017
Degree sessions
Session From To
Sessione estiva Appelli di Laurea Jul 18, 2017 Jul 18, 2017
Sessione autunnale Appelli di laurea Nov 22, 2017 Nov 22, 2017
Sessione invernale Appelli di laurea Mar 20, 2018 Mar 20, 2018
Holidays
Period From To
Festa di Ognissanti Nov 1, 2016 Nov 1, 2016
Festa dell'Immacolata Concezione Dec 8, 2016 Dec 8, 2016
Vacanze di Natale Dec 23, 2016 Jan 8, 2017
Vacanze di Pasqua Apr 14, 2017 Apr 18, 2017
Anniversario della Liberazione Apr 25, 2017 Apr 25, 2017
Festa del Lavoro May 1, 2017 May 1, 2017
Festa della Repubblica Jun 2, 2017 Jun 2, 2017
Vacanze estive Aug 8, 2017 Aug 20, 2017

Exam calendar

Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.

Exam calendar

Should you have any doubts or questions, please check the Enrolment FAQs

Academic staff

B C D F G M O P Q S T U V Z

Bicego Manuele

manuele.bicego@univr.it +39 045 802 7072
Foto,  February 9, 2017

Bloisi Domenico Daniele

domenico.bloisi@univr.it

Boscaini Maurizio

maurizio.boscaini@univr.it

Buffelli Mario Rosario

mario.buffelli@univr.it +39 0458027268

Busato Federico

federico.busato@univr.it

Calanca Andrea

andrea.calanca@univr.it +39 045 802 7847

Capaldi Stefano

stefano.capaldi@univr.it +39 045 802 7907

Castellini Alberto

alberto.castellini@univr.it +39 045 802 7908

Cicalese Ferdinando

ferdinando.cicalese@univr.it +39 045 802 7969

Combi Carlo

carlo.combi@univr.it 045 802 7985

Daducci Alessandro

alessandro.daducci@univr.it +39 045 8027025

Delledonne Massimo

massimo.delledonne@univr.it 045 802 7962; Lab: 045 802 7058

Dell'Orco Daniele

daniele.dellorco@univr.it +39 045 802 7637

Dominici Paola

paola.dominici@univr.it 045 802 7966; Lab: 045 802 7956-7086

D'Onofrio Mariapina

mariapina.donofrio@univr.it 045 802 7801

Drago Nicola

nicola.drago@univr.it 045 802 7081

Farinelli Alessandro

alessandro.farinelli@univr.it +39 045 802 7842

Giachetti Andrea

andrea.giachetti@univr.it +39 045 8027998

Giorgetti Alejandro

alejandro.giorgetti@univr.it 045 802 7982

Gobbi Bruno

bruno.gobbi@univr.it

Gregorio Enrico

Enrico.Gregorio@univr.it 045 802 7937

Manca Vincenzo

vincenzo.manca@univr.it 045 802 7981

Maris Bogdan Mihai

bogdan.maris@univr.it +39 045 802 7074

Menegaz Gloria

gloria.menegaz@univr.it +39 045 802 7024

Migliorini Sara

sara.migliorini@univr.it +39 045 802 7908

Oliboni Barbara

barbara.oliboni@univr.it +39 045 802 7077

Piccinelli Fabio

fabio.piccinelli@univr.it +39 045 802 7097

Posenato Roberto

roberto.posenato@univr.it +39 045 802 7967

Quaglia Davide

davide.quaglia@univr.it +39 045 802 7811

Spoto Nicola Fausto

fausto.spoto@univr.it +39 045 8027940

Trabetti Elisabetta

elisabetta.trabetti@univr.it 045/8027209

Valenti Maria Teresa

mariateresa.valenti@univr.it +39 045 812 8450

Villa Tiziano

tiziano.villa@univr.it +39 045 802 7034

Zanatta Marco

marco.zanatta@univr.it +39 045 802 7093

Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University. Please select your Study Plan based on your enrolment year.

ModulesCreditsTAFSSD
12
C
CHIM/03 ,CHIM/06
6
A
FIS/01
English language competence-complete b1 level
6
E
-

1° Year

ModulesCreditsTAFSSD
12
C
CHIM/03 ,CHIM/06
6
A
FIS/01
English language competence-complete b1 level
6
E
-

3° Year

ModulesCreditsTAFSSD
One course to be chosen among the following
Other activitites
3
F
-
Prova finale
3
E
-

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




S Placements in companies, public or private institutions and professional associations

Teaching code

4S004476

Coordinatore

Stefano Capaldi

Credits

6

Language

Italian

Scientific Disciplinary Sector (SSD)

BIO/11 - MOLECULAR BIOLOGY

Period

II sem. dal Mar 1, 2018 al Jun 15, 2018.

Learning outcomes

The aim of this course is to provide a detailed description at the molecular level of the main issues regarding the mechanisms involved transmission, variation and expression of the information contained in the genome of prokaryotes and eukaryotes. The main themes of the course will be a detailed description of the processes of gene transcription and translation and those related to DNA replication and mutagenesis.
Knowledge and understanding: the students will acquire knowledge of the fundamental structures of biological systems in a molecular and cellular view and of the mechanisms inherent to the transmission, manipulation and expression of the information contained in the genome of prokaryotes and eukaryotes.
Ability to apply the knowledge: the students will be able to read the genetic bases of life and to apply the acquired knowledge to use and possibly develop bioinformatic tools for the investigation of structure-function relationships of biological macromolecules and the regulation of their functions. They will be able to read and understand advanced biology textsbooks and undertake a master-level course in both biotechnology and bioinformatics.

Program

Program of the course:
The genetic information and informational molecules
General introduction and history. The structure of DNA and RNA. From genes to proteins, messenger RNA, transfer RNA and ribosomal RNA. The genetic code.
DNA and gene structure
The definition of gene. Coding and regulatory regions. Genes interrupted; introns.
Organization and evolution of genomes
DNA content and number of genes. Repetitive DNA. Gene families and gene duplication. Mutation, rearrangements of DNA and evolution of genomes.
The genomes of organelles.
Mobile genetic elements
Transposons,retrotransposons and retrovirus.
Chromatin and chromosomes
The nucleosomes; histones and their modifications. Higher levels of organization of chromatin. Eterochromatin and euchromatin. Eukaryotic chromosomes,telomers and centromeres.
DNA replication
The DNA polymerase. Proofreading activities of DNA polymerase.
The mechanism of replication in bacteria and eukaryotes.
Mutations and DNA repair
Spontaneous mutations and mutations caused by physical and chemical mutagens. Pre and post replication rapair systems. Recombination in immune system cells.
RNAs and transcription
The different types of RNA: synthesis and maturation. Bacterial RNA polymerase. The sigma factors. The eukaryotic RNA polymerase. Eukaryotic mRNA : capping, polyadenilation, transport in the cytoplasm. The process of transcription in bacteria and eukaryotes.
Regulation of gene expression
Bacterial promoters. Operons. Eukaryotic promoters. The regulation elements: enhancers, silencers, insulators, LCR. Gene expression and chromatin modifications. Epigenetic effects.
Introns and RNA Splicing
Spliceosomal introns. The spliceosome and mechanism of splicing. Alternative splicing and trans-Splicing. Other types of introns: group I and II introns. RNA editing. Ribozymes and riboswitch.
Translations
The ribosomes. Structure and function of tRNA. Synthesis of aminoacil-tRNA. Beginning of translation in bacteria and eukaryotes. Synthesis of polypeptides and termination of translation. Regulation of the translation. Location of proteins.

The teaching material used in class lessons is available on the e-learning platform of the course.

Suggested textbooks:
Lewin, The Gene - Compact Edition, Zanichelli
Cox, Molecular Biology, Zanichelli
Watson, Molecular Biology of the Genus, Zancihelli

Examination Methods

The exam consists of multiple-choice test.

Type D and Type F activities

Modules not yet included

Career prospects


Module/Programme news

News for students

There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details.

Graduation

For schedules, administrative requirements and notices on graduation sessions, please refer to the Graduation Sessions - Science and Engineering service.

List of theses and work experience proposals

Stage Research area
Correlated mutations Various topics

Attendance

As stated in point 25 of the Teaching Regulations for the A.Y. 2021/2022, attendance at the course of study is not mandatory.
Please refer to the Crisis Unit's latest updates for the mode of teaching.

Career management


Area riservata studenti