Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

Academic calendar

The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.

Academic calendar

Course calendar

The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..

Definition of lesson periods
Period From To
I sem. Oct 2, 2017 Jan 31, 2018
II sem. Mar 1, 2018 Jun 15, 2018
Exam sessions
Session From To
Sessione invernale d'esami Feb 1, 2018 Feb 28, 2018
Sessione estiva d'esame Jun 18, 2018 Jul 31, 2018
Sessione autunnale d'esame Sep 3, 2018 Sep 28, 2018
Degree sessions
Session From To
Sessione di laurea estiva Jul 23, 2018 Jul 23, 2018
Sessione di laurea autunnale Oct 17, 2018 Oct 17, 2018
Sessione di laurea invernale Mar 22, 2019 Mar 22, 2019
Holidays
Period From To
Christmas break Dec 22, 2017 Jan 7, 2018
Easter break Mar 30, 2018 Apr 3, 2018
Patron Saint Day May 21, 2018 May 21, 2018
VACANZE ESTIVE Aug 6, 2018 Aug 19, 2018

Exam calendar

Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.

Exam calendar

Should you have any doubts or questions, please check the Enrolment FAQs

Academic staff

A B C D G M O R S Y

Agostiniani Virginia

virginia.agostiniani@univr.it +39 045 802 7979

Albi Giacomo

giacomo.albi@univr.it +39 045 802 7913

Baldo Sisto

sisto.baldo@univr.it 045 802 7935

Bos Leonard Peter

leonardpeter.bos@univr.it +39 045 802 7987

Caliari Marco

marco.caliari@univr.it +39 045 802 7904

Daldosso Nicola

nicola.daldosso@univr.it +39 045 8027076 - 7828 (laboratorio)

Di Persio Luca

luca.dipersio@univr.it +39 045 802 7968

Gregorio Enrico

Enrico.Gregorio@univr.it 045 802 7937

Mantese Francesca

francesca.mantese@univr.it +39 045 802 7978

Marigonda Antonio

antonio.marigonda@univr.it +39 045 802 7809

Mazzuoccolo Giuseppe

giuseppe.mazzuoccolo@univr.it +39 0458027838

Monti Francesca

francesca.monti@univr.it 045 802 7910

Orlandi Giandomenico

giandomenico.orlandi at univr.it 045 802 7986

Rizzi Romeo

romeo.rizzi@univr.it +39 045 8027088

Sansonetto Nicola

nicola.sansonetto@univr.it 049-8027932

Schuster Peter Michael

peter.schuster@univr.it +39 045 802 7029

Solitro Ugo

ugo.solitro@univr.it +39 045 802 7977

Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University. Please select your Study Plan based on your enrolment year.

CURRICULUM TIPO:
ModulesCreditsTAFSSD
6
B
MAT/05
Final exam
32
E
-

2° Year

ModulesCreditsTAFSSD
6
B
MAT/05
Final exam
32
E
-
Modules Credits TAF SSD
Between the years: 1°- 2°To be chosen between
Between the years: 1°- 2°
Between the years: 1°- 2°
Other activitites
4
F
-

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




SPlacements in companies, public or private institutions and professional associations

Teaching code

4S001106

Coordinatore

Antonio Marigonda

Credits

6

Language

English en

Scientific Disciplinary Sector (SSD)

MAT/05 - MATHEMATICAL ANALYSIS

Period

I sem. dal Oct 2, 2017 al Jan 31, 2018.

Learning outcomes

In this course we will provide an introduction to Convex Analysis in finite and infinite-dimensional spaces. We will show also some applications to problems of nonlinear optimizations and control theory arising from physics and economics.

At the end of the course, the student should be able to:
- understand the deep link between this and the previous courses (in particular, Functional Analysis);
- use the main tools of convex analysis to solve convex optimization problems;
- formalize and analyze simple control system coming from physical and economics models, in the framework of optimal control theory;
- be autonomous in the us of the textbook suggested for the course.

Program

Table of contents
==============

- Review of weak topology on Banach spaces: convex sets, Minkowski functional, linear continuous operators, weak topology, separation of convex sets.

- Convex functions: general properties, lower semicontinuous convex functions, convex conjugate, subdifferential in the sense of Convex Analysis. Introduction to Calculus of Variations.

- Generalizations of convexity: differential calculus in Hilbert and Banach spaces, proximal and limiting subdifferential, the density theorem, sum rule, chain rule, generalized gradient in Banach space.

- Introduction to control theory: multifunctions and trajectories of differential inclusions, viability,
equilibria, invariance, stabilization, reachability, Pontryagin Maximum Principle, necessary conditions
for optimality.

- Application to optimization problems arising from physical or economic models.

The course is divided in two part: 5 ECTS (Theory, 40 hours) and 1 ECTS (Exercises, 12 hours). Both part will be held as in class lectures.

During the course some cases of study will be assigned to groups of 4-5 student and will be discussed.

Recommended Textbooks
=====================
Ivar Ekeland and Roger Témam, Convex Analysis and Variational Problems, Ed. SIAM (1987)

F.H. Clarke, Y.S. Ledyaev, Ronald J. Stern, P.R. Wolenski, Nonsmooth Analysis and Control Theory, Ed. Springer-Verlag New York Inc. (1998)

Frank H. Clarke, Optimization and Nonsmooth Analysis, Ed. SIAM (1990)

Reference texts
Author Title Publishing house Year ISBN Notes
Ralph Tyrrell Rockafellar Convex Analysis Princeston University Press 1997 9780691015866 Tenth reprint. First edition 1970
Ivar Ekeland and Roger Témam Convex Analysis and Variational Problems SIAM 1987 0-89871-450-8
F.H. Clarke, Y.S. Ledyaev, Ronald J. Stern, P.R. Wolenski Nonsmooth Analysis and Control Theory Springer-Verlag New York Inc. 1998 0387983368
Frank H. Clarke Optimization and Nonsmooth Analysis SIAM 1990 0-89871-256-4

Examination Methods

Assessment Procedure
===================

The exam is divided into a written and an oral test, the two tests must be passed in the same exam session. There are no difference between the assessment of attending or non-attending students.

There will be also two partial test, one at the mid of the semester (indicatively, end of November), and the other one at the end of the semester. The first part will concern the first part of the program (until the introduction to the Calculus of Variations included), and the second on the remaining part of the program. The students who will pass both the partial tests, can directly access to the oral part in the exam session of February.

After the oral part, the teacher will propose the final mark (on the Italian ranking system from 18 to 30).

Structure of the tests
==================

The written test is concerns three exercise, and each of them will have the same contribute to the final mark. The first two exercises (one on the first part and the other on the second part of the program) will require the solution of specific problems. The third will be composed of questions on the whole of the program or on the material given to the students, asking for short open answers.

Each of the partial test will concern the relative part of the program, and will be made of three exercise. The first two will require the solution of specific problems, and the third e il terzo will be composed of questions on the relative part of the program or on the material given to the students, asking for short open answers. It will be mandatory for the student to solve the third exercise and choose one between the first and the second.

The oral part will test the whole of the program of the course.

Targets of the assessment procedure
===============================
- Knowledge and understanding: a part of the written and the oral tests will be devoted to verify the effective knowledge and understanding of the course's contents (mainly, the third exercise of the written test and the oral test).

- Applying knowledge and understanding: both during the written and the oral tests, the student will be required to solve problems based on the course's contents.

- Making judgements: during the tests, the student can be asked to solve problems requiring a contribution basing on the material of the course assigned for personal study.

- Communication skills: during the written and the oral tests, the solutions expressed in a clear, complete and short way will be preferred.

- Learning skills: part of the course's contents will be based on textbook or scientific articles left to the students for personal study.

Bibliography

Type D and Type F activities

Modules not yet included

Career prospects


Module/Programme news

News for students

There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details.

Further services

I servizi e le attività di orientamento sono pensati per fornire alle future matricole gli strumenti e le informazioni che consentano loro di compiere una scelta consapevole del corso di studi universitario.


Graduation

Attachments

List of theses and work experience proposals

theses proposals Research area
Controllo di sistemi multiagente Calculus of variations and optimal control; optimization - Hamilton-Jacobi theories, including dynamic programming
Controllo di sistemi multiagente Calculus of variations and optimal control; optimization - Manifolds
Controllo di sistemi multiagente Calculus of variations and optimal control; optimization - Optimality conditions
Formule di rappresentazione per gradienti generalizzati Mathematics - Analysis
Formule di rappresentazione per gradienti generalizzati Mathematics - Mathematics
Mathematics Bachelor and Master thesis titles Various topics
Stage Research area
Internship proposals for students in mathematics Various topics

Double degree

The University of Verona, through a network of agreements with foreign universities, offers international courses that enable students to gain a Double/Joint degree at the time of graduation. Indeed, students enrolled in a Double/Joint degree programme will be able to obtain both the degree of the University of Verona and the degree issued by the Partner University abroad - where they are expected to attend part of the programme -, in the time it normally takes to gain a common Master’s degree. The institutions concerned shall ensure that both degrees are recognised in the two countries.

Places on these programmes are limited, and admissions and any applicable grants are subject to applicants being selected in a specific Call for applications.

The latest Call for applications for Double/Joint Degrees at the University of Verona is available now!


Alternative learning activities

In order to make the study path more flexible, it is possible to request the substitution of some modules with others of the same course of study in Mathematics at the University of Verona (if the educational objectives of the modules to be substituted have already been achieved in the previous career), or with others of the course of study in Mathematics at the University of Trento.

Attachments


Attendance

As stated in point 25 of the Teaching Regulations for the A.Y. 2021/2022, except for specific practical or lab activities, attendance is not mandatory. Regarding these activities, please see the web page of each module for information on the number of hours that must be attended on-site.
Please refer to the Crisis Unit's latest updates for the mode of teaching.

Career management


Area riservata studenti