Studying at the University of Verona
Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.
Study Plan
This information is intended exclusively for students already enrolled in this course.If you are a new student interested in enrolling, you can find information about the course of study on the course page:
Laurea magistrale in Medical bioinformatics - Enrollment from 2025/2026The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.
1° Year
Modules | Credits | TAF | SSD |
---|
A scelta un insegnamento tra
A scelta due insegnamenti tra
2° Year activated in the A.Y. 2017/2018
Modules | Credits | TAF | SSD |
---|
A scelta tre insegnamenti tra
Modules | Credits | TAF | SSD |
---|
A scelta un insegnamento tra
A scelta due insegnamenti tra
Modules | Credits | TAF | SSD |
---|
A scelta tre insegnamenti tra
Legend | Type of training activity (TTA)
TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.
Natural Computing (2017/2018)
Teaching code
4S004557
Academic staff
Coordinator
Credits
6
Also offered in courses:
- Non-conventional Calculation Methods of the course Master's degree in Computer Science and Engineering
Language
English
Scientific Disciplinary Sector (SSD)
INF/01 - INFORMATICS
Period
I sem. dal Oct 2, 2017 al Jan 31, 2018.
Location
VERONA
Learning outcomes
The course is designed to first recall basic concepts of traditional computational models, such as formal languages and automata, and then present several models of bio-inspired computing, including bio-molecular algorithms. Main models of natural computing are presented, in terms of computational processes observed in and inspired by nature.
Some basic notions of discrete mathematics (sets, multisets, sequences, trees, graphs, induction, grammars and finite automata), of calculus, linear algebra and probability, are assumed, to explain a few computational methods both to elaborate genomic information and to investigate metabolic networks.
The course aims at developing the ability of the student both to master notions of discrete structures and dynamics, and to deepen his/her notion of Turing computation, in order to extend it to informational processes involving either natural or bio-inspired algorithms. Student's knowledge of all the topics explained in class will be tested at the exam, along with his/her learning and understanding skills.
Program
Introduction to natural computing, biological algorithms, and life algorithmic strategies.
Basic notions of discrete mathematics and of formal language theory (Chomsky's hierarchy, automata, and computability).
Elements of information theory (information sources, codes, entropy, and entropy divergences, typical sequences, first and second Shannon's theory).
Methods to extract and analyze genomic dictionaries.
Genomic profiles and distributions of recurrent motifs.
Software IGtools to analyze and visualize genomic data.
Computational models of bio-molecular processes, such as DNA self-assembly and membrane computing.
DNA computing and bio-complexity of bio-algorithms.
DNA algorithms to solve NP-complete problems.
MP grammars, networks, and metabolic dynamics.
Author | Title | Publishing house | Year | ISBN | Notes |
---|---|---|---|---|---|
Gheorghe Paun, Grzegorz Rozenberg, Arto Salomaa | DNA computing: new computing paradigms (Edizione 3) | Springer | 2013 | Previous editions: 1998, 2006. | |
Martin A. Nowak | Evolutionary Dynamics (Edizione 1) | Harvard University Press | 2006 | 0-674-02338-3 | |
Vincenzo Manca | Infobiotics | Springer | 2013 |
Examination Methods
-- One (only) written exam is proposed in the last class of the course, along with about ten questions which cover the whole program. The exam is passed if a majority of questions is answered correctly, by achieving a final evaluation greater or equal to 18/30.
-- Oral exam, covering the whole program, is offered in each exam session. It is passed with an evaluation greater or equal to 18/30.
Written and oral questions are aimed at verifying the knowledge of theorems and proofs, algorithms and data analysis methods (explained in class), as well as verifying the problem/exercise solving ability of the student, developed in the course. In this context, student's skills of learning, understanding, and communication are tested contextually to his/her knowledge of concepts explained in the course.
Optional homework assignment (project), may be agreed with students who have already passed the (either written or oral) exam, in order to increase the final vote with additional marks. It is meant either to deepen some argument of the course, of interest for the student, or to develop software to apply some knowledge assimilated in the course to specific biological systems. This is an opportunity for the student to apply his/her knowledge learnt in the course, by expressing autonomous initiatives.
Teaching materials e documents
-
AlgoritmiBiotecnologici (pdf, en, 1504 KB, 10/26/17)
-
AlgoritmiDNA (pdf, en, 9630 KB, 10/24/17)
-
CalcoliMembrana (pdf, en, 4580 KB, 11/15/17)
-
CalcoliMetabolici (pdf, en, 6521 KB, 11/22/17)
-
ChomskyGrammars (pdf, en, 7912 KB, 12/14/17)
-
Follow-up (pdf, en, 15635 KB, 11/8/17)
-
GenomicaInformazionale (pdf, en, 13545 KB, 11/4/17)
-
IGtools (zip, en, 6431 KB, 11/8/17)
-
Informazione-Vita (pdf, en, 1974 KB, 10/18/17)
-
LezioniIntroduttive (pdf, en, 10895 KB, 10/10/17)
-
LezioniProfManca (pdf, en, 9932 KB, 12/14/17)
-
SolutionTest19Dec (pdf, en, 237 KB, 12/19/17)
-
Test Grades (pdf, en, 53 KB, 1/8/18)
-
TuringMachines (pdf, en, 807 KB, 12/14/17)