Studying at the University of Verona

A.A. 2018/2019

Academic calendar

Il calendario accademico riporta le scadenze, gli adempimenti e i periodi rilevanti per la componente studentesca, personale docente e personale dell'Università. Sono inoltre indicate le festività e le chiusure ufficiali dell'Ateneo.
L’anno accademico inizia il 1° ottobre e termina il 30 settembre dell'anno successivo.

Academic calendar

Course calendar

The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..

Definition of lesson periods
Period From To
I semestre Oct 1, 2018 Jan 31, 2019
II semestre Mar 4, 2019 Jun 14, 2019
Exam sessions
Session From To
Sessione invernale d'esame Feb 1, 2019 Feb 28, 2019
Sessione estiva d'esame Jun 17, 2019 Jul 31, 2019
Sessione autunnale d'esame Sep 2, 2019 Sep 30, 2019
Degree sessions
Session From To
Sessione di laurea estiva Jul 22, 2019 Jul 22, 2019
Sessione di laurea autunnale Oct 15, 2019 Oct 15, 2019
Sessione di laurea autunnale straordinaria Nov 21, 2019 Nov 21, 2019
Sessione di laurea invernale Mar 19, 2020 Mar 19, 2020
Holidays
Period From To
Sospensione attività didattica Nov 2, 2018 Nov 3, 2018
Vacanze di Natale Dec 24, 2018 Jan 6, 2019
Vacanze di Pasqua Apr 19, 2019 Apr 28, 2019
Vacanze estive Aug 5, 2019 Aug 18, 2019

Exam calendar

The exam roll calls are centrally administered by the operational unit  Science and Engineering Teaching and Student Services Unit
Exam Session Calendar and Roll call enrolment sistema ESSE3. If you forget your password to the online services, please contact the technical office in your Faculty or to the service credential recovery.

Exam calendar

Per dubbi o domande Read the answers to the more serious and frequent questions - F.A.Q. Examination enrolment

Academic staff

A B C D G M O P R S Z

Albi Giacomo

giacomo.albi@univr.it +39 045 802 7913

Angeleri Lidia

lidia.angeleri@univr.it 045 802 7911

Baldo Sisto

sisto.baldo@univr.it 045 802 7935

Bos Leonard Peter

leonardpeter.bos@univr.it +39 045 802 7987

Boscaini Maurizio

maurizio.boscaini@univr.it

Busato Federico

federico.busato@univr.it

Caliari Marco

marco.caliari@univr.it +39 045 802 7904

Canevari Giacomo

giacomo.canevari@univr.it +39 045 8027979

Chignola Roberto

roberto.chignola@univr.it 045 802 7953

Cordoni Francesco Giuseppe

francescogiuseppe.cordoni@univr.it

Daffara Claudia

claudia.daffara@univr.it +39 045 802 7942

Daldosso Nicola

nicola.daldosso@univr.it +39 045 8027076 - 7828 (laboratorio)

De Sinopoli Francesco

francesco.desinopoli@univr.it 045 842 5450

Di Persio Luca

luca.dipersio@univr.it +39 045 802 7968

Gregorio Enrico

Enrico.Gregorio@univr.it 045 802 7937

Magazzini Laura

laura.magazzini@univr.it 045 8028525

Malachini Luigi

luigi.malachini@univr.it 045 8054933

Mantese Francesca

francesca.mantese@univr.it +39 045 802 7978

Mariotto Gino

gino.mariotto@univr.it +39 045 8027031

Mariutti Gianpaolo

gianpaolo.mariutti@univr.it 045 802 8241

Mazzuoccolo Giuseppe

giuseppe.mazzuoccolo@univr.it +39 0458027838

Migliorini Sara

sara.migliorini@univr.it +39 045 802 7908

Orlandi Giandomenico

giandomenico.orlandi at univr.it 045 802 7986

Piccinelli Fabio

fabio.piccinelli@univr.it +39 045 802 7097

Rizzi Romeo

romeo.rizzi@univr.it +39 045 8027088

Sansonetto Nicola

nicola.sansonetto@univr.it 049-8027932

Schuster Peter Michael

peter.schuster@univr.it +39 045 802 7029

Solitro Ugo

ugo.solitro@univr.it +39 045 802 7977

Zuccher Simone

simone.zuccher@univr.it

Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University. Please select your Study Plan based on your enrolment year.

CURRICULUM TIPO:
TeachingsCreditsTAFSSD
6
A
(MAT/02)
6
B
(MAT/03)
6
C
(SECS-P/01)
6
C
(SECS-P/01)
6
B
(MAT/06)
English B1
6
E
-
TeachingsCreditsTAFSSD
6
C
(SECS-P/05)
12
C
(SECS-S/06)
Final exam
6
E
-

2° Anno

TeachingsCreditsTAFSSD
6
A
(MAT/02)
6
B
(MAT/03)
6
C
(SECS-P/01)
6
C
(SECS-P/01)
6
B
(MAT/06)
English B1
6
E
-

3° Anno

TeachingsCreditsTAFSSD
6
C
(SECS-P/05)
12
C
(SECS-S/06)
Final exam
6
E
-
Teachings Credits TAF SSD
Between the years: 1°- 2°- 3°
Between the years: 1°- 2°- 3°
Other activities
6
F
-

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




SPlacements in companies, public or private institutions and professional associations

Teaching code

4S004794

Credits

6

Coordinatore

Giacomo Albi

Scientific Disciplinary Sector (SSD)

BIO/13 - EXPERIMENTAL BIOLOGY

Language of instruction

Italian

The teaching is organized as follows:

Parte 1

Credits

3

Period

I semestre

Academic staff

Giacomo Albi

Parte 2

Credits

3

Period

I semestre

Academic staff

Roberto Chignola

Learning outcomes

The course is an introduction to the basic and most known mathematical models developed to solve biological and medical problems.
We will discuss deterministic as well as probabilistic models, together with the statistical tools used to quantify the uncertainties characterizing complex biological systems.
At the end of the course the students should be able to :
- understand and discuss the main models of biological systems, with particular attention to the validity of the assumptions, and the definition of different parameters;
- develop and analyze simple models;
- understand the impact of the parameter, also with respect to their measure uncertainty;
- compare the predictions of the models with the experimental data;
- communicate the results in an interdisciplinary environment.

Program

Part I (Albi)

A) Discrete, and continuous model of single population:
* Growth models
* Time delay models
* Biological systems with feedback
B) Discrete, and continuous model of interacting populations
* Linear and non-linear models: Predator-Prey models; SIS, SIR models, tumor growth.
* Single perturbed systems & oscillators: Enzyme Kinetics, Fitzhugh–Nagumo Model for neuronal membrane,
synchronization models.
C) Discrete and continuous probabilistic models:
* Stochastic growth models, and stochastic predator-prey models, oscillators with random noise.
* Reaction-Diffusion processes, Chemotaxis.
* Monte-Carlo methods
D) Parameter identification and data analysis
* Statistical inference, theory of the estimators, maximum likelihood, test of hypothesis.
* Data fitting, Linear and non-linear regression, Kalmann filter, sensitivity analysis.

Part II (Chignola)
- probabilistic models for biomedicine
- the Luria and Delbrück experiment
- growth models for population biology
- allometry and scaling laws
- phenomenological models for tumor growth
- models for cell physiology
- multi-scale models in oncology



Examination Methods

Part A: written exam with the help of computer, solution of exercises on the basis of the one solved during the course. Students will be required to modify the numerical codes seen in Matlab/Octave. Possibility of midterm examination.

Part B: Oral evaluation. The students will have to prepare and critically discuss a short essay.

Bibliografia

Reference texts
Activity Author Title Publishing house Year ISBN Notes
Parte 1 J. Murray Mathematical Biology Springer 2002 0-387-95223-3
Parte 1 J. D. Logan, W. R. Wolesensky Mathematical Methods in Biology 2009 9780470525876
Parte 1 Brian Ingalls Mathematical Modelling in Systems Biology: An Introduction  
Parte 1 V. Comincioli METODI NUMERICI E STATISTICI PER LE SCIENZE APPLICATE Universitá degli Studi di Pavia 2004

Tipologia di Attività formativa D e F

Academic year

Course not yet included

Career prospects


Avvisi degli insegnamenti e del corso di studio

Per la comunità studentesca

Se sei già iscritta/o a un corso di studio, puoi consultare tutti gli avvisi relativi al tuo corso di studi nella tua area riservata MyUnivr.
In questo portale potrai visualizzare informazioni, risorse e servizi utili che riguardano la tua carriera universitaria (libretto online, gestione della carriera Esse3, corsi e-learning, email istituzionale, modulistica di segreteria, procedure amministrative, ecc.).
Entra in MyUnivr con le tue credenziali GIA.

Graduation

List of theses and work experience proposals

theses proposals Research area
Formule di rappresentazione per gradienti generalizzati Mathematics - Analysis
Formule di rappresentazione per gradienti generalizzati Mathematics - Mathematics
Mathematics Bachelor and Master thesis titles Various topics
Stage Research area
Internship proposals for students in mathematics Various topics

University Language Centre - CLA


Further services

I servizi e le attività di orientamento sono pensati per fornire alle future matricole gli strumenti e le informazioni che consentano loro di compiere una scelta consapevole del corso di studi universitario.