Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

A.A. 2018/2019

Academic calendar

The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.

Academic calendar

Course calendar

The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..

Definition of lesson periods
Period From To
I semestre Oct 1, 2018 Jan 31, 2019
II semestre Mar 4, 2019 Jun 14, 2019
Exam sessions
Session From To
Sessione invernale d'esame Feb 1, 2019 Feb 28, 2019
Sessione estiva d'esame Jun 17, 2019 Jul 31, 2019
Sessione autunnale d'esame Sep 2, 2019 Sep 30, 2019
Degree sessions
Session From To
Sessione Estiva Jul 18, 2019 Jul 18, 2019
Sessione Autunnale Oct 17, 2019 Oct 17, 2019
Sessione Invernale Mar 18, 2020 Mar 18, 2020
Holidays
Period From To
Sospensione dell'attività didattica Nov 2, 2018 Nov 3, 2018
Vacanze di Natale Dec 24, 2018 Jan 6, 2019
Vacanze di Pasqua Apr 19, 2019 Apr 28, 2019
Festa del Santo Patrono May 21, 2019 May 21, 2019
Vacanze estive Aug 5, 2019 Aug 18, 2019

Exam calendar

Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.

Exam calendar

Should you have any doubts or questions, please check the Enrolment FAQs

Academic staff

B C D F G L M O P Q R S V

Belussi Alberto

alberto.belussi@univr.it +39 045 802 7980

Bombieri Nicola

nicola.bombieri@univr.it +39 045 802 7094

Bonacina Maria Paola

mariapaola.bonacina@univr.it +39 045 802 7046

Boscaini Maurizio

maurizio.boscaini@univr.it

Busato Federico

federico.busato@univr.it

Calanca Andrea

andrea.calanca@univr.it +39 045 802 7847

Carra Damiano

damiano.carra@univr.it +39 045 802 7059

Castellani Umberto

umberto.castellani@univr.it +39 045 802 7988

Cicalese Ferdinando

ferdinando.cicalese@univr.it +39 045 802 7969

Cristani Matteo

matteo.cristani@univr.it 045 802 7983

Cristani Marco

marco.cristani@univr.it +39 045 802 7841

Cubico Serena

serena.cubico@univr.it 045 802 8132

Dall'Alba Diego

diego.dallalba@univr.it +39 045 802 7074

Dalla Preda Mila

mila.dallapreda@univr.it

Farinelli Alessandro

alessandro.farinelli@univr.it +39 045 802 7842

Favretto Giuseppe

giuseppe.favretto@univr.it +39 045 802 8749 - 8748

Fummi Franco

franco.fummi@univr.it 045 802 7994

Giachetti Andrea

andrea.giachetti@univr.it +39 045 8027998

Giacobazzi Roberto

roberto.giacobazzi@univr.it +39 045 802 7995

Lovato Pietro

pietro.lovato@univr.it +39 045 802 7035

Maris Bogdan Mihai

bogdan.maris@univr.it +39 045 802 7074

Masini Andrea

andrea.masini@univr.it 045 802 7922

Mastroeni Isabella

isabella.mastroeni@univr.it +39 045 802 7089

Menegaz Gloria

gloria.menegaz@univr.it +39 045 802 7024

Merro Massimo

massimo.merro@univr.it 045 802 7992

Muradore Riccardo

riccardo.muradore@univr.it +39 045 802 7835

Oliboni Barbara

barbara.oliboni@univr.it +39 045 802 7077

Paci Federica Maria Francesca

federicamariafrancesca.paci@univr.it +39 045 802 7909

Pravadelli Graziano

graziano.pravadelli@univr.it +39 045 802 7081

Quaglia Davide

davide.quaglia@univr.it +39 045 802 7811

Rizzi Romeo

romeo.rizzi@univr.it +39 045 8027088

Romeo Alessandro

alessandro.romeo@univr.it +39 045 802 7974-7936; Lab: +39 045 802 7808

Segala Roberto

roberto.segala@univr.it 045 802 7997

Setti Francesco

francesco.setti@univr.it +39 045 802 7804

Villa Tiziano

tiziano.villa@univr.it +39 045 802 7034

Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University. Please select your Study Plan based on your enrolment year.

CURRICULUM TIPO:
ModulesCreditsTAFSSD
12
B
(ING-INF/05)
12
B
(ING-INF/05)
6
B
(ING-INF/05)
6
B
(ING-INF/05)
ModulesCreditsTAFSSD
6
B
(INF/01)
6
B
(ING-INF/05)
Other activities
4
F
-
Final exam
24
E
-

1° Year

ModulesCreditsTAFSSD
12
B
(ING-INF/05)
12
B
(ING-INF/05)
6
B
(ING-INF/05)
6
B
(ING-INF/05)

2° Year

ModulesCreditsTAFSSD
6
B
(INF/01)
6
B
(ING-INF/05)
Other activities
4
F
-
Final exam
24
E
-
Modules Credits TAF SSD
Between the years: 1°- 2°2 modules among the following
6
C
(INF/01)
6
C
(INF/01)
6
C
(SECS-P/10)
6
C
(INF/01)
Between the years: 1°- 2°

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




SPlacements in companies, public or private institutions and professional associations

Teaching code

4S02709

Credits

12

Coordinatore

Romeo Rizzi

The teaching is organized as follows:

Complessità

Credits

6

Period

II semestre

Academic staff

Ferdinando Cicalese

Algoritmi

Credits

6

Period

II semestre

Academic staff

Romeo Rizzi

Learning outcomes

We refer to the web pages of the modules for the complete and precise list of goals of the course as divided into its two parts. We limit ourselves to focus here on the overall targets of the Algorithm course, as a whole, which is to expose some aspects of the deep and important dialectic exchange between the search for algorithmic solutions and the study of the complexity of problems. Here, we can only touch upon the nature of the privileged relationship of these two disciplines, and their actual unity (like the Yin and Yang sides of a single one art), hoping, nonetheless, that this will help orienting the student in tackling this adventurous path with the right enthusiasm and perspective.

Algorithms are the backbone and the substance of information technologies, but at the same time their study goes beyond the "mere" computer science and is pervasive to all the disciplines that are problem-bearers.
The design of an algorithm starts from the study of the structure of the problem to be solved and it usually represents the highest achievement of this process. The study of algorithms requires and offers methodologies and techniques of problem solving, logical and mathematical skills.
The course therefore aims to provide students with fundamental skills and methodologies for the analysis of problems and the design of the algorithms for solving them. Particular emphasis is given to the efficiency of the algorithms themselves, and the theory of computational complexity plays a profound methodological role in the analysis of problems. For non-trivial problems, the process of algorithm design rests on the theory of complexity not only to identify on which questions, and subproblems, it may make sense to concentrate efforts, but also as a dialectical counterpart providing the right language to disclose the subtle nuances of the problem and guiding towards the appropriate way of addressing its solution. A goal of the course is to highlight and illustrate the symbiosis between the competences (algorithm design and the study of problem complexity) which are addressed in the two modules.

With reference to the overall didactic aims of the Master program, the course leads students to deepen and expand the three-year training in the field of analysis and evaluation of problems, algorithms, and computational models, providing a wealth of advanced tools to address non-trivial problems in different IT fields.

Program

See the sheets for the two separate modules of this course.

Examination Methods

When the student has collected, in its own mark wallet, both a positive mark for the Complexity module (at least 18) and a positive mark for the Algorithms module (at least 18), then he can ask for the recording of its final mark obtained as the rounded-up average of the above two marks, where 30+lode = 33. In order to get 30+lode as your final mark you need to get at least one lode and both marks should be at least 30. When you think your time has come to ask for registering this final mark, you send a mail to romeo.rizzi@univr.it making precise:
1. mark for the Algorithms module: specify the session of the exam at which you got your best mark, this best mark, and the bonus points. (Specify the file in the mark wallet).
2. mark for the Complexity module: specify the last session of the exam where you delivered your elaborate for correction.
3. specify your generalities (student code VRxxxxxx) and the expected mark.

The whole workflow for obtaining your mark is described at:
http://profs.sci.univr.it/~rrizzi/classes/Algoritmi/index.html

At the same page you can find the wallet of your marks for both the "Algorithms" and the "Computationl Complexity" modules comprising the course (if any), plus your extra scores for Algorithms in case you have collected any of them with projects. (For the Algorithms module, you will also find here the problems given at previous exam sessions,
and more detailed instructions on the procedures for the exam and for the composition and registration of your mark.)
For the module-specific informations we redirect to the Didactic Dashboard sheets of the single module.

Bibliografia

Reference texts
Author Title Publishing house Year ISBN Notes
Sanjoy Dasgupta, Christos Papadimitriou, Umesh Vazirani Algorithms (Edizione 1) McGraw-Hill Higher Education 2007 978-0-07-352340-8
S. Arora, B. Barak Computational Complexity. A modern approach (Edizione 1) Cambridge University Press 2009 9780521424264
Michael Sipser Introduction to the Theory of Computation PWS 1997 053494728X
T. Cormen, C. Leiserson, R. Rivest, C. Stein Introduzione agli Algoritmi e Strutture Dati (Edizione 2) McGraw-Hill 2005 88-386-6251-7
J. Kleinberg, É. Tardos Algorithm Design (Edizione 1) Addison Wesley 2006 978-0321295354
Ingo Wegener Complexity Theory Springer 2005
Cristopher Moore, Stephan Mertens The Nature of Computation Oxford 2011

Type D and Type F activities

Modules not yet included

Career prospects


Module/Programme news

News for students

There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details.

Gestione carriere


Graduation

List of theses and work experience proposals

theses proposals Research area
Analisi ed identificazione automatica del tono/volume della voce AI, Robotics & Automatic Control - AI, Robotics & Automatic Control
Analisi e percezione dei segnali biometrici per l'interazione con robot AI, Robotics & Automatic Control - AI, Robotics & Automatic Control
Integrazione del simulatore del robot Nao con Oculus Rift AI, Robotics & Automatic Control - AI, Robotics & Automatic Control
BS or MS theses in automated reasoning Computing Methodologies - ARTIFICIAL INTELLIGENCE
Sviluppo sistemi di scansione 3D Computing Methodologies - COMPUTER GRAPHICS
Sviluppo sistemi di scansione 3D Computing Methodologies - IMAGE PROCESSING AND COMPUTER VISION
Dati geografici Information Systems - INFORMATION SYSTEMS APPLICATIONS
Analisi ed identificazione automatica del tono/volume della voce Robotics - Robotics
Analisi e percezione dei segnali biometrici per l'interazione con robot Robotics - Robotics
Integrazione del simulatore del robot Nao con Oculus Rift Robotics - Robotics
BS or MS theses in automated reasoning Theory of computation - Logic
BS or MS theses in automated reasoning Theory of computation - Semantics and reasoning
Proposte di tesi/collaborazione/stage in Intelligenza Artificiale Applicata Various topics
Proposte di Tesi/Stage/Progetto nell'ambito delle basi di dati/sistemi informativi Various topics

Attendance

As stated in point 25 of the Teaching Regulations for the A.Y. 2021/2022, attendance at the course of study is not mandatory.
Please refer to the Crisis Unit's latest updates for the mode of teaching.

Further services

I servizi e le attività di orientamento sono pensati per fornire alle future matricole gli strumenti e le informazioni che consentano loro di compiere una scelta consapevole del corso di studi universitario.