Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

Academic calendar

The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.

Academic calendar

Course calendar

The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..

Definition of lesson periods
Period From To
I sem. Oct 2, 2017 Jan 31, 2018
II sem. Mar 1, 2018 Jun 15, 2018
Exam sessions
Session From To
Sessione invernale d'esame Feb 1, 2018 Feb 28, 2018
Sessione estiva d'esame Jun 18, 2018 Jul 31, 2018
Sessione autunnale d'esame Sep 3, 2018 Sep 28, 2018
Degree sessions
Session From To
Sessione Estiva Lauree Magistrali Jul 19, 2018 Jul 19, 2018
Sessione Autunnale Lauree Magistrali Oct 18, 2018 Oct 18, 2018
Sessione Invernale Lauree Magistrali Mar 21, 2019 Mar 21, 2019
Holidays
Period From To
Christmas break Dec 22, 2017 Jan 7, 2018
Easter break Mar 30, 2018 Apr 3, 2018
Patron Saint Day May 21, 2018 May 21, 2018
Vacanze estive Aug 6, 2018 Aug 19, 2018

Exam calendar

Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.

Exam calendar

Should you have any doubts or questions, please check the Enrolment FAQs

Academic staff

B C D F G L M O P Q R S V

Belussi Alberto

alberto.belussi@univr.it +39 045 802 7980

Bombieri Nicola

nicola.bombieri@univr.it +39 045 802 7094

Bonacina Maria Paola

mariapaola.bonacina@univr.it +39 045 802 7046

Boscaini Maurizio

maurizio.boscaini@univr.it

Busato Federico

federico.busato@univr.it

Calanca Andrea

andrea.calanca@univr.it +39 045 802 7847

Carra Damiano

damiano.carra@univr.it +39 045 802 7059

Castellani Umberto

umberto.castellani@univr.it +39 045 802 7988

Cicalese Ferdinando

ferdinando.cicalese@univr.it +39 045 802 7969

Cristani Matteo

matteo.cristani@univr.it 045 802 7983

Cristani Marco

marco.cristani@univr.it +39 045 802 7841

Cubico Serena

serena.cubico@univr.it 045 802 8132

Dall'Alba Diego

diego.dallalba@univr.it +39 045 802 7074

Dalla Preda Mila

mila.dallapreda@univr.it

Farinelli Alessandro

alessandro.farinelli@univr.it +39 045 802 7842

Favretto Giuseppe

giuseppe.favretto@univr.it +39 045 802 8749 - 8748

Fummi Franco

franco.fummi@univr.it 045 802 7994

Giachetti Andrea

andrea.giachetti@univr.it +39 045 8027998

Giacobazzi Roberto

roberto.giacobazzi@univr.it +39 045 802 7995

Lovato Pietro

pietro.lovato@univr.it +39 045 802 7035

Maris Bogdan Mihai

bogdan.maris@univr.it +39 045 802 7074

Masini Andrea

andrea.masini@univr.it 045 802 7922

Mastroeni Isabella

isabella.mastroeni@univr.it +39 045 802 7089

Menegaz Gloria

gloria.menegaz@univr.it +39 045 802 7024

Merro Massimo

massimo.merro@univr.it 045 802 7992

Muradore Riccardo

riccardo.muradore@univr.it +39 045 802 7835

Oliboni Barbara

barbara.oliboni@univr.it +39 045 802 7077

Paci Federica Maria Francesca

federicamariafrancesca.paci@univr.it +39 045 802 7909

Pravadelli Graziano

graziano.pravadelli@univr.it +39 045 802 7081

Quaglia Davide

davide.quaglia@univr.it +39 045 802 7811

Rizzi Romeo

romeo.rizzi@univr.it +39 045 8027088

Romeo Alessandro

alessandro.romeo@univr.it +39 045 802 7974-7936; Lab: +39 045 802 7808

Segala Roberto

roberto.segala@univr.it 045 802 7997

Setti Francesco

francesco.setti@univr.it +39 045 802 7804

Villa Tiziano

tiziano.villa@univr.it +39 045 802 7034

Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University. Please select your Study Plan based on your enrolment year.

CURRICULUM TIPO:
ModulesCreditsTAFSSD
12
B
ING-INF/05
6
B
ING-INF/05
12
B
ING-INF/05
ModulesCreditsTAFSSD
6
B
INF/01
6
B
ING-INF/05
Other activitites
4
F
-
Final exam
24
E
-

1° Year

ModulesCreditsTAFSSD
12
B
ING-INF/05
6
B
ING-INF/05
12
B
ING-INF/05

2° Year

ModulesCreditsTAFSSD
6
B
INF/01
6
B
ING-INF/05
Other activitites
4
F
-
Final exam
24
E
-
Modules Credits TAF SSD
Between the years: 1°- 2°2 courses to be chosen among the following
6
C
INF/01
6
C
INF/01
6
C
INF/01
Between the years: 1°- 2°

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




SPlacements in companies, public or private institutions and professional associations

Teaching code

4S02792

Credits

6

Coordinatore

Marco Cristani

Language

Italian

Scientific Disciplinary Sector (SSD)

INF/01 - INFORMATICS

The teaching is organized as follows:

Teoria

Credits

5

Period

I semestre

Academic staff

Marco Cristani

Laboratorio

Credits

1

Period

I semestre

Academic staff

Marco Cristani

Learning outcomes

The course aims to provide: i) advanced techniques of statistical recognition and machine learning, as discriminative and neural classifiers (deep learning); ii) advanced techniques for the programming of professional code for classification in industrial environments; iii) knowledge of classification problems of the industrial world, and techniques usually used for their resolution.

At the end of the course the student must demonstrate to be able to: i) understand if a classification problem can be solved without the existing technologies; ii) understand what type of learning algorithm should be used for training a classifier.

Furthermore, he / she must demonstrate that he / she has the ability to apply the acquired knowledge: i) identifying what type of classifier or recognizer should be used in response to a given problem; iii) understanding that the machine learning strategy must be implemented according to the number of training data available; iii) understanding the complexity of the problem of recognition in computational terms; iv) being able to write professional software that recognizes real data, possibly modifying it in relation to the problem under examination.

This knowledge will allow the student to understand that measures of error and performance must be taken into account given a specific problem under consideration. Furthermore, this knowledge will enable the student to continue his or her studies autonomously in the context of automatic learning or recognition.

Program

The course presents a series of state-of-the-art topics in the field of recognition. Each topic will be explained through updated articles together with the lesson slides. The following books are suggested as a reference:
- Christopher M. Bishop. 2006. Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA.
- Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT Press, 2016.

Topics:
- Classification validation tools: Confusion matrix and derivative measurements, ROC and CMC curves, average precision, average quadratic error, label correlation, grading and regression measures
- Kernel machines, Support Vector Machines
- VLFeat for object recognition: Dense object recognition through multiclass discriminatory models
- Dense classification features as bag of words
- Shape descriptors for object tracking: B-spline and Condensation
- Deep learning in Tensorflow: Multinomial Logistic Classifier, Neural Networks, Convolutional Neural Network

Examination Methods

The exam involves the discussion of a code project, which proposes a solution to an industrial classification problem. The final score will depend on the classification figure of merits achieved by the classifier and the theoretical motivations that prompted the student to choose a particular algorithm.

Type D and Type F activities

Modules not yet included

Career prospects


Module/Programme news

News for students

There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details.

Further services

I servizi e le attività di orientamento sono pensati per fornire alle future matricole gli strumenti e le informazioni che consentano loro di compiere una scelta consapevole del corso di studi universitario.


Graduation

List of theses and work experience proposals

theses proposals Research area
Analisi ed identificazione automatica del tono/volume della voce AI, Robotics & Automatic Control - AI, Robotics & Automatic Control
Analisi e percezione dei segnali biometrici per l'interazione con robot AI, Robotics & Automatic Control - AI, Robotics & Automatic Control
Integrazione del simulatore del robot Nao con Oculus Rift AI, Robotics & Automatic Control - AI, Robotics & Automatic Control
BS or MS theses in automated reasoning Computing Methodologies - ARTIFICIAL INTELLIGENCE
Sviluppo sistemi di scansione 3D Computing Methodologies - COMPUTER GRAPHICS
Sviluppo sistemi di scansione 3D Computing Methodologies - IMAGE PROCESSING AND COMPUTER VISION
Dati geografici Information Systems - INFORMATION SYSTEMS APPLICATIONS
Analisi ed identificazione automatica del tono/volume della voce Robotics - Robotics
Analisi e percezione dei segnali biometrici per l'interazione con robot Robotics - Robotics
Integrazione del simulatore del robot Nao con Oculus Rift Robotics - Robotics
BS or MS theses in automated reasoning Theory of computation - Logic
BS or MS theses in automated reasoning Theory of computation - Semantics and reasoning
Proposte di tesi/collaborazione/stage in Intelligenza Artificiale Applicata Various topics
Proposte di Tesi/Stage/Progetto nell'ambito delle basi di dati/sistemi informativi Various topics

Attendance

As stated in point 25 of the Teaching Regulations for the A.Y. 2021/2022, attendance at the course of study is not mandatory.
Please refer to the Crisis Unit's latest updates for the mode of teaching.

Career management


Area riservata studenti