Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

Queste informazioni sono destinate esclusivamente agli studenti e alle studentesse già iscritti a questo corso.
Se sei un nuovo studente interessato all'immatricolazione, trovi le informazioni sul percorso di studi alla pagina del corso:

Laurea magistrale in Ingegneria e scienze informatiche - Immatricolazione dal 2025/2026.

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.

CURRICULUM TIPO:

1° Year 

ModulesCreditsTAFSSD
12
B
ING-INF/05
6
B
ING-INF/05
12
B
ING-INF/05

2° Year   activated in the A.Y. 2018/2019

ModulesCreditsTAFSSD
6
B
INF/01
6
B
ING-INF/05
Other activitites
4
F
-
Final exam
24
E
-
ModulesCreditsTAFSSD
12
B
ING-INF/05
6
B
ING-INF/05
12
B
ING-INF/05
activated in the A.Y. 2018/2019
ModulesCreditsTAFSSD
6
B
INF/01
6
B
ING-INF/05
Other activitites
4
F
-
Final exam
24
E
-
Modules Credits TAF SSD
Between the years: 1°- 2°
2 courses to be chosen among the following
6
C
INF/01
6
C
INF/01
6
C
INF/01
Between the years: 1°- 2°

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




S Placements in companies, public or private institutions and professional associations

Teaching code

4S02792

Credits

6

Coordinator

Marco Cristani

Language

Italian

Scientific Disciplinary Sector (SSD)

INF/01 - INFORMATICS

The teaching is organized as follows:

Teoria

Credits

5

Period

I semestre

Academic staff

Marco Cristani

Laboratorio

Credits

1

Period

I semestre

Academic staff

Marco Cristani

Learning outcomes

The course aims to provide: i) advanced techniques of statistical recognition and machine learning, as discriminative and neural classifiers (deep learning); ii) advanced techniques for the programming of professional code for classification in industrial environments; iii) knowledge of classification problems of the industrial world, and techniques usually used for their resolution.

At the end of the course the student must demonstrate to be able to: i) understand if a classification problem can be solved without the existing technologies; ii) understand what type of learning algorithm should be used for training a classifier.

Furthermore, he / she must demonstrate that he / she has the ability to apply the acquired knowledge: i) identifying what type of classifier or recognizer should be used in response to a given problem; iii) understanding that the machine learning strategy must be implemented according to the number of training data available; iii) understanding the complexity of the problem of recognition in computational terms; iv) being able to write professional software that recognizes real data, possibly modifying it in relation to the problem under examination.

This knowledge will allow the student to understand that measures of error and performance must be taken into account given a specific problem under consideration. Furthermore, this knowledge will enable the student to continue his or her studies autonomously in the context of automatic learning or recognition.

Program

The course presents a series of state-of-the-art topics in the field of recognition. Each topic will be explained through updated articles together with the lesson slides. The following books are suggested as a reference:
- Christopher M. Bishop. 2006. Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA.
- Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT Press, 2016.

Topics:
- Classification validation tools: Confusion matrix and derivative measurements, ROC and CMC curves, average precision, average quadratic error, label correlation, grading and regression measures
- Kernel machines, Support Vector Machines
- VLFeat for object recognition: Dense object recognition through multiclass discriminatory models
- Dense classification features as bag of words
- Shape descriptors for object tracking: B-spline and Condensation
- Deep learning in Tensorflow: Multinomial Logistic Classifier, Neural Networks, Convolutional Neural Network

Examination Methods

The exam involves the discussion of a code project, which proposes a solution to an industrial classification problem. The final score will depend on the classification figure of merits achieved by the classifier and the theoretical motivations that prompted the student to choose a particular algorithm.

Students with disabilities or specific learning disorders (SLD), who intend to request the adaptation of the exam, must follow the instructions given HERE