Studying at the University of Verona
Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.
Study Plan
The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.
1° Year
Modules | Credits | TAF | SSD |
---|
2° Year activated in the A.Y. 2020/2021
Modules | Credits | TAF | SSD |
---|
3° Year activated in the A.Y. 2021/2022
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Legend | Type of training activity (TTA)
TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.
Biological and physical sciences (2019/2020)
The teaching is organized as follows:
Learning outcomes
L’insegnamento si propone di fornire le conoscenze di scienze di base quali biologia, genetica, biochimica e fisica, pre-requisito per ulteriori approfondimenti specialistici che saranno oggetto degli insegnamenti successivi. Verrà fornita una preparazione culturale rispetto alla biologia cellulare (caratteristiche strutturali, funzionali e molecolari dei processi cellulari comuni a tutti gli organismi viventi e loro interazioni), alla biochimica (dalle basi di chimica organica ai principali processi biochimici), alla fisica applicata (meccanica e fluidodinamica) e alla genetica medica (tipi di ereditarietà mendeliana e trasmissione delle malattie genetiche nell’uomo). MODULO BIOCHIMICA: Il Corso si propone di fornire: -conoscenze di base di chimica organica propedeutiche alla biochimica; conoscenze sulle relazioni struttura-funzione delle principali classi di macromolecole biologiche e sulla regolazione metabolica a livello molecolare -conoscenze sulle interconnessioni esistenti tra i diversi processi biochimici e le trasformazioni energetiche ad essi connesse. Al termine dell’insegnamento lo Studente dovrà dimostrare di aver acquisito terminologie e nozioni utili per un’analisi critica dei processi biochimici vitali in modo da conseguire autonomia di valutazione critica e globale dei processi stessi. MODULO BIOLOGIA APPLICATA: Il corso si propone di fornire le conoscenze di base di biologia umana descrivendo in particolare i principi basilari su cui poggia la biologia, le caratteristiche strutturali, funzionali e molecolari dei processi cellulari comuni a tutti gli organismi viventi, la trasmissione dei caratteri ereditari, sviluppando al contempo un linguaggio appropriato. Durante il corso saranno in particolare messi in risalto gli aspetti della biologia umana di particolare interesse biomedico associate all'ostetricia. Al termine del corso lo Studente sarà in grado di comprendere i meccanismi che regolano la vita, la riproduzione cellulare, le interazioni tra le cellule e di riconoscere le diverse modalità di trasmissione dei caratteri mendeliani nell’uomo, base indispensabile per affrontare gli insegnamenti successivi che lo Studente incontrerà nel corso di studio. MODULO FISICA APPLICATA: Il modulo si pone l’obiettivo di fare familiarizzare gli Studenti con le conoscenze fisiche di base sulle leggi fondamentali della Fisica, in particolare di meccanica e fluidodinamica e loro applicazione in fenomeni e situazioni concrete di interesse bio-medico; gli Studenti saranno guidati ad acquisire capacità di risolvere semplici problemi di Fisica, anche applicati a situazioni concrete come ad esempio articolazioni ed equilibrio dei corpi. MODULO GENETICA MEDICA: Lo Studente sarà guidato ad acquisire conoscenze e competenze di base di genetica medica per comprendere e distinguere i vari tipi di ereditarietà mendeliana e i meccanismi di trasmissione dei caratteri ereditari normali e patologici, con attenzione rispetto alle malattie genetiche nell’uomo. Verranno affrontati inoltre i rischi genetici di ricorrenza e le problematiche mediche, etiche e sociali della consulenza genetica e della diagnostica prenatale, con l’obiettivo di fare acquisire allo Studente conoscenze di base.
Program
------------------------
MM: BIOCHIMICA
------------------------
- Organic chemistry: nomenclature of organic compounds and recognition of functional groups. - Carbohydrates: monosaccharides, disaccharides, polysaccharides, glycogen, starch, cellulose, glycosaminoglycans, proteoglycans and glycoproteins. - Proteins: amino acids, protein structure levels, peptide bond, alpha-helix, beta-sheet, globular protein, myoglobin and hemoglobin, allosteric regulation. - Enzymes: Classification of enzymes, active site, specificity and isoenzymes, cofactors and coenzymes, vitamins, regulation of enzyme activity, allosteric enzymes. - Lipids: lipids and their functions, acylglycerols fatty acids, phospholipids, terpenes, steroids, cholesterol, fat-soluble vitamins, eicosanoids, lipoproteins. - Introduction to metabolism: catabolism and anabolism, ATP and phosphocreatine, coenzymes redox (NAD+ and FAD), redox reactions, metabolic pathways, metabolic intermediates, regulating metabolism, coupled reactions, signs of genetic defects of metabolism. - Carbohydrate metabolism: glycolysis and its regulation, pentose phosphate pathway, alcoholic and lactic fermentation, synthesis of acetyl-coenzyme A, oxidative decarboxylation of pyruvate, Krebs cycle and its regulation, gluconeogenesis and its regulation, Cori cycle, glycogenolysis and glycogen synthesis, hormone regulation (glucagon, insulin and adrenaline), diabetes mellitus. - Oxidative phosphorylation: mitochondrial respiratory chain, standard reduction potential, electron transport and proton pumps, mitochondrial ATP synthase. - Lipid metabolism: beta-oxidation of fatty acids, ketones, lipid biosynthesis, acid synthase-fat, cholesterol metabolism. - Metabolism of proteins and amino acids: transamination, glucose-alanine cycle, urea cycle, biosynthesis of amino acids, branched chain amino acids. The frontal teaching is the method adopted in this Course.
------------------------
MM: FISICA APPLICATA
------------------------
Program Physical quantities, vectors, exercises. Derivative of a function, calculation, examples and exercises. Fermat's theorem and Rolle’s theorem. MECHANICS : Position , displacement , various dimensional motion , rectilinear motion. Average speed and instantaneous speed . Exercises. Acceleration , rectilinear motion uniformly accelerated . Exercises. Laws of Motion ( I, II , III ) .. inertial mass . Weight force . Exercises. Work of a force . Kinetic energy. Kinetic energy theorem . Conservative forces . Potential energy. Gravitational potential energy . Theorem of mechanical energy. Exercises Power . FLUID DYNAMICS : Pressure , density , specific gravity , the law of Stevin , hydraulic press , barometer Torricelli tube manometer open , Archimedes' principle . Exercises. Ideal fluid , stationary bike , motorcycle not turbulent flow . Continuity equation . Venturi . Exercises. Theorem of Torricelli (tank) . Applications . Exercises. Stokes force . Friction in fluids .
------------------------
MM: BIOLOGIA APPLICATA
------------------------
Characteristics of the living beings. Major themes and fundamental concepts of biology. Origin of life. Cell Theory. Biological kingdoms and domains. Evolution and Natural Selection. Water: characteristics and biological importance. Eukaryotic and prokaryotic cell and viruses: common features and differences. Endosymbiotic theory and evolution from prokaryotes to eukaryotes to multicellular organisms. Structure, function and organization of the cell: main characteristics and functions of organelles and cytoskeleton. Role of internal compartmentalization. The human genome: Organisation of DNA in chromosomes. Structure and organisation of chromosomes. Nucleosomes and packed chromosome. Euchromatin and Heterochromatin. Cell cycle: definition, significance of the phases and regulation. Hints about cell death and staminal cells. Cell division. Asexual reproduction and Mitosis. Sexual reproduction and meiosis. Crossing-over. Human gametogenesis. Chromosomal bases of inheritance: Autosome and sexual chromosomes. Dosage compensation and X inactivation in Mammals. Molecular bases of inheritance. DNA: structure, function, replication and its role in heredity. Definition of gene. Informational pathway: transcription, RNA processing (splicing), genetic code, RNA translation and protein synthesis. Hints about regulation of gene expression in eukaryotes. DNA mutation. Different classes of mutations. Spontanous mutations. Mutations induced by chemicals or physical agents. Mendelian genetics and Heredity. Definition of phenotype, genotype, locus, gene, allele, domin ant, rtecessive, homozygote and heterozygote. Mendel’s laws. Allele segregation and independent assortment of genes. Gene – chromosome relationship: independence and association; genetic recombiantion. Genetics of AB0 and Rh blood groups. Attendance to lessons is mandatory, as specified on the teaching regulation. The course will be delivered through frontal lessons covering the whole exam program and aimed at achieving the learning outcomes of the course. Students can use one of the recommended text-books, at their own choice. Further insights may be added to the teaching webpage on the university e-Learning platform, throughout the course. During the whole Academic Year, students may request personal reception to the teachers, by e mail or phone.
------------------------
MM: GENETICA MEDICA
------------------------
Genomics, Genetics, Epigenetics The human genome. Pedigrees. Mendelian inheritance. Non traditional inheritance. Cytogenetics Standard human karyotype. Anatomy of human chromosomes. Molecular cytogenetics (FISH, aCGH). Numerical and structural chromosome anomalies. Clinical genetics and bioethics Genetic counseling. Prenatal diagnosis. Preimplantation genetic diagnosis (PGD). Genetic testing. Stem cells and regenerative medicine. Bioethic and social issues. Goals Basic knowledge of human genetics. Understanding of the principles of hereditary transmission of normal and abnormal traits, as well as the origin of biological hereditary variation.
Bibliography
Author | Title | Publishing house | Year | ISBN | Notes |
---|---|---|---|---|---|
M. Samaja, R. Paroni | Chimica e Biochimica | Piccin | 2016 | ||
Solomon, Martin, Martin, Berg | Elementi di Biologia (Edizione 7) | EdiSES | 2017 | 978-88-7959-938-2 | |
Raven, Johnson, Mason, Losos, Singer | Elementi di biologia e genetica (Edizione 2) | Piccin | 2019 | ||
Sadava, Hillis, Craig Heller, Hacker | Elementi di Biologia e Genetica (Edizione 5) | Zanichelli | 2019 | ||
scannicchio | fisica biomedica | ||||
Strachan T. and Read A. | Human Molecular Genetics (Edizione 5) | Garland Science (CRC press) | 2018 |
Examination Methods
The exam consists of 4 written tests, one for each module, based on all the issues covered throughout the course. Tests can be passed separately as long as they are within the same academic year.
For each academic year, 6 periods are available to take the exams: 2 in the Winter Session at the end of the course, 2 in the Summer Session and 2 in the Autumn Session.
Students who have been admitted to the undergraduate degree with a score lower than 6 points in Biology, 3 points in Chemistry and / or 3 points in Physics and Mathematics, must have first discharged their training debts, before taking the exam.
To pass the exam, students must get a score of not less than 18/30 in each test. The final mark (/out of 30) willl derive from the weighted average over credits of each single test score. Students can retire or refuse the proposed score: in such case, any partial credit will be canceled and the students shall enroll again for the whole examination (all the 4 tests).
See the forms of each single module for more details.