Studiare
In questa sezione è possibile reperire le informazioni riguardanti l'organizzazione pratica del corso, lo svolgimento delle attività didattiche, le opportunità formative e i contatti utili durante tutto il percorso di studi, fino al conseguimento del titolo finale.
Piano Didattico
Il piano didattico è l'elenco degli insegnamenti e delle altre attività formative che devono essere sostenute nel corso della propria carriera universitaria.
Selezionare il piano didattico in base all'anno accademico di iscrizione.
1° Anno
Insegnamenti | Crediti | TAF | SSD |
---|
2° Anno Attivato nell'A.A. 2020/2021
Insegnamenti | Crediti | TAF | SSD |
---|
3° Anno Attivato nell'A.A. 2021/2022
Insegnamenti | Crediti | TAF | SSD |
---|
Insegnamenti | Crediti | TAF | SSD |
---|
Insegnamenti | Crediti | TAF | SSD |
---|
Insegnamenti | Crediti | TAF | SSD |
---|
Insegnamenti | Crediti | TAF | SSD |
---|
Legenda | Tipo Attività Formativa (TAF)
TAF (Tipologia Attività Formativa) Tutti gli insegnamenti e le attività sono classificate in diversi tipi di attività formativa, indicati da una lettera.
Analisi matematica I (2019/2020)
Codice insegnamento
4S00030
Docenti
Coordinatore
Crediti
12
Lingua di erogazione
Italiano
Settore Scientifico Disciplinare (SSD)
MAT/05 - ANALISI MATEMATICA
Periodo
I semestre dal 1 ott 2019 al 31 gen 2020.
Obiettivi formativi
Nel corso vengono introdotti i concetti e le tecniche del calcolo differenziale ed integrale, enfatizzandone gli aspetti metodologico-applicativi rispetto agli elementi logico-formali, con l'obiettivo di fornire gli strumenti di base per affrontare le problematiche scientifiche formalizzabili nel linguaggio della matematica del continuo. Al termine dell'insegnamento gli studenti e le studentesse dovranno essere in grado di dimostrare un'adeguata capacità di sintesi e di astrazione, essere in grado di riconoscere e produrre dimostrazioni rigorose ed essere in grado di formalizzare e risolvere problemi di moderata difficoltà, limitatamente al syllabus dell'insegnamento. Proprietà dei numeri reali. Successioni e serie numeriche. Limiti. Funzioni continue. Calcolo differenziale per funzioni di una variabile. Calcolo integrale per funzioni di una variabile reale. Introduzione alle equazioni differenziali ordinarie. Topologia della retta reale.
Programma
(i) Prerequisiti. Elementi di geometria analitica (equazioni di retta, parabola, circonferenza, ellisse, iperbole). Disequazioni di 2° grado. Regola di Ruffini. Binomio di Newton. Funzioni trigonometriche, esponenziale, logaritmo. Numeri naturali, principio di induzione. Numeri interi, razionali. Il sistema dei numeri reali: assioma di Dedekind, principio di Archimede, estremo superiore ed inferiore. Valore assoluto, disuguaglianza triangolare.
(ii) Successioni e serie numeriche. Limite di una successione. Convergenza delle successioni monotone e limitate. Successioni definite per ricorrenza. Il numero e . Teorema della permanenza del segno, teorema dei due Carabinieri. Operazioni con i limiti, forme indeterminate. La funzione esponenziale, logaritmo. Funzioni trigonometriche, coordinate polari, formule di Eulero. Serie numeriche. Convergenza della serie geometrica. Criteri di convergenza per serie a termini positivi: condizioni necessarie, criterio del confronto, del confronto asintotico, di condensazione, del rapporto, della radice. Criterio di convergenza assoluta. Criterio di convergenza di Leibnitz. Convergenza delle serie di potenze.
(iii) Continuità delle funzioni di una variabile. Sottoinsiemi di R: intervalli aperti, chiusi. Punti di accumulazione. Limite di funzioni reali. Limiti notevoli. Nozione di o ("o" piccolo). Funzioni continue. Funzioni continue su un intervallo: teorema degli zeri, teorema di Bolzano-Weierstrass. Conseguenze del teorema degli zeri: teorema dei valori intermedi (l'immagine continua di un intervallo è un intervallo), le funzioni continue invertibili sono monotone, continuità della funzione inversa.
(iv) Calcolo differenziale per funzioni di una variabile. Derivata di una funzione in un punto, significato geometrico, fisico. Continuità di una funzione derivabile. Derivate successive. Derivate delle funzioni elementari. Principali regole di derivazione. Tassi di crescita relativi e problemi applicati. Principio di Fermat. Teorema di Rolle. Teorema di Lagrange (del valor medio) e prime conseguenze. Problemi applicati di massimo e minimo. Regola di de l'Hôpital e applicazioni. Formula di Taylor, resto in forma di Peano e di Lagrange. Sviluppo di Taylor delle funzioni elementari, applicazioni al calcolo dei limiti e allo studio qualitativo del grafico di una funzione. Serie di Taylor, funzioni analitiche. Teorema di derivazione (e integrazione) termine a termine per serie di potenze.
(v) Calcolo integrale per funzioni di una variabile. Il problema inverso della derivazione, integrale indefinito. Il problema delle aree, integrale definito: definizione e proprietà dell'integrale di Riemann. Integrabilità delle funzioni continue. Teorema della media integrale. Teorema fondamentale del calcolo integrale. Metodi di integrazione: per sostituzione, per parti. Integrazione delle funzioni elementari. Applicazioni al calcolo di lunghezze, aree, volumi. Convergenza degli integrali impropri: criterio del confronto, criterio di integrabilità assoluta. Criterio integrale di convergenza per una serie numerica a termini positivi.
(vi) Introduzione alle equazioni differenziali ordinarie. Equazione lineare del primo ordine. Equazioni a variabili separabili; esempio senza unicita' delle soluzioni; integrazione e condizione sufficiente per l'unicita' delle soluzioni. Equazione lineare del secondo ordine; equazioni omogenee a coefficienti costanti; Wronskiano e metodo di variazione delle costanti arbitrarie; oscillazioni forzate.
(vii) Topologia della retta reale.
Al di fuori del monte ore dell'insegnamento, che comprende sia lezioni frontali che esercitazioni in aula, sono offerte attività di tutorato e attività di recupero delle conoscenze in ingresso richieste per affrontare con successo il Corso di Studi.
Autore | Titolo | Casa editrice | Anno | ISBN | Note |
---|---|---|---|---|---|
M.Bramanti,C.D.Pagani,S.Salsa | Analisi Matematica 1 | Zanichelli | 2009 | 978-88-08-06485-1 | |
Giuseppe de Marco | Analisi uno. Primo corso di analisi matematica. Teoria ed esercizi | Zanichelli | 1996 | 8808243125 | |
R.A. Adams | Calcolo Differenziale 1 - Funzioni di una variabile reale | Casa Editrice Ambrosiana |
Modalità d'esame
L'esame finale consiste in una prova scritta comprendente una serie di domande a scelte multiple e di
esercizi da risolvere relativi al programma svolto, seguita, in caso di esito positivo, da una prova
orale che verterà principalmente ma non esclusivamente sui punti (vi) e (vii) del programma.
La prova scritta, valutata in trentesimi, potrà essere sostituita da due prove in itinere, la prima a inizio dicembre e la seconda coincidente con il primo appello scritto utile di febbraio: in questo caso, il voto dello scritto sarà dato dalla media aritmetica dei due voti scritti. Questa parte dell'esame ha lo scopo di verificare la capacità di risolvere problemi sul programma dell'insegnamento, ma anche il possesso di un'adeguata capacità di analisi, sintesi ed astrazione, a partire da richieste formulate in linguaggio naturale o in linguaggio specifico.
La prova orale ha principalmente lo scopo di verificare la capacità di riconoscere e produrre dimostrazioni rigorose e la capacità di analisi, sintesi ed astrazione.
Alla prova orale verrà attribuito un punteggio da -5 a +5 trentesimi, da sommare algebricamente al punteggio della prova scritta per ottenere il voto finale.