Studiare

In questa sezione è possibile reperire le informazioni riguardanti l'organizzazione pratica del corso, lo svolgimento delle attività didattiche, le opportunità formative e i contatti utili durante tutto il percorso di studi, fino al conseguimento del titolo finale.

Calendario accademico

Il calendario accademico riporta le scadenze, gli adempimenti e i periodi rilevanti per la componente studentesca, personale docente e personale dell'Università. Sono inoltre indicate le festività e le chiusure ufficiali dell'Ateneo.
L’anno accademico inizia il 1° ottobre e termina il 30 settembre dell'anno successivo.

Calendario accademico

Calendario didattico

Il calendario didattico indica i periodi di svolgimento delle attività formative, di sessioni d'esami, di laurea e di chiusura per le festività.

Definizione dei periodi di lezione
Periodo Dal Al
I sem. 2-ott-2017 31-gen-2018
I - II semestre 2-ott-2017 15-giu-2018
II sem. 1-mar-2018 15-giu-2018
Sessioni degli esami
Sessione Dal Al
Sessione invernale d'esami 1-feb-2018 28-feb-2018
Sessione estiva d'esame 18-giu-2018 31-lug-2018
Sessione autunnale d'esame 3-set-2018 28-set-2018
Sessioni di lauree
Sessione Dal Al
Sessione di laurea estiva 23-lug-2018 23-lug-2018
Sessione di laurea autunnale 17-ott-2018 17-ott-2018
Sessione autunnale di laurea 23-nov-2018 23-nov-2018
Sessione di laurea invernale 22-mar-2019 22-mar-2019
Vacanze
Periodo Dal Al
Vacanze di Natale 22-dic-2017 7-gen-2018
Vacanze di Pasqua 30-mar-2018 3-apr-2018
Festa del Santo Patrono - S. Zeno 21-mag-2018 21-mag-2018
VACANZE ESTIVE 6-ago-2018 19-ago-2018

Calendario esami

Gli appelli d'esame sono gestiti dalla Unità Operativa Segreteria Corsi di Studio Scienze e Ingegneria.
Per consultazione e iscrizione agli appelli d'esame visita il sistema ESSE3.
Per problemi inerenti allo smarrimento della password di accesso ai servizi on-line si prega di rivolgersi al supporto informatico della Scuola o al servizio recupero credenziali

Calendario esami

Per dubbi o domande leggi le risposte alle domande più frequenti F.A.Q. Iscrizione Esami

Docenti

A B C D F G L M O P R S Z

Agostiniani Virginia

symbol email virginia.agostiniani@univr.it symbol phone-number +39 045 802 7979

Albi Giacomo

symbol email giacomo.albi@univr.it symbol phone-number +39 045 802 7913

Angeleri Lidia

symbol email lidia.angeleri@univr.it symbol phone-number 045 802 7911

Baldo Sisto

symbol email sisto.baldo@univr.it symbol phone-number 3470157539

Bos Leonard Peter

symbol email leonardpeter.bos@univr.it symbol phone-number +39 045 802 7987

Boscaini Maurizio

symbol email maurizio.boscaini@univr.it

Busato Federico

symbol email federico.busato@univr.it

Caliari Marco

symbol email marco.caliari@univr.it symbol phone-number +39 045 802 7904

Canevari Giacomo

symbol email giacomo.canevari@univr.it symbol phone-number +39 045 8027979

Chignola Roberto

symbol email roberto.chignola@univr.it symbol phone-number 045 802 7953

Daffara Claudia

symbol email claudia.daffara@univr.it symbol phone-number +39 045 802 7942

Dai Pra Paolo

symbol email paolo.daipra@univr.it symbol phone-number +39 0458027093

Daldosso Nicola

symbol email nicola.daldosso@univr.it symbol phone-number +39 045 8027076 - 7828 (laboratorio)

De Sinopoli Francesco

symbol email francesco.desinopoli@univr.it symbol phone-number 045 842 5450

Di Persio Luca

symbol email luca.dipersio@univr.it symbol phone-number +39 045 802 7968

Fioroni Tamara

symbol email tamara.fioroni@univr.it symbol phone-number 0458028489

Gnoatto Alessandro

symbol email alessandro.gnoatto@univr.it symbol phone-number 045 802 8537
Foto,  12 gennaio 2023

Gonzato Guido

symbol email guido.gonzato@univr.it symbol phone-number 045 802 8303

Gregorio Enrico

symbol email Enrico.Gregorio@univr.it symbol phone-number 045 802 7937

Liptak Zsuzsanna

symbol email zsuzsanna.liptak@univr.it symbol phone-number +39 045 802 7032

Magazzini Laura

symbol email laura.magazzini@univr.it symbol phone-number 045 8028525

Mantese Francesca

symbol email francesca.mantese@univr.it symbol phone-number +39 045 802 7978

Mariotto Gino

symbol email gino.mariotto@univr.it symbol phone-number +39 045 8027031

Mazzuoccolo Giuseppe

symbol email giuseppe.mazzuoccolo@univr.it symbol phone-number +39 0458027838

Migliorini Sara

symbol email sara.migliorini@univr.it symbol phone-number +39 045 802 7908

Monti Francesca

symbol email francesca.monti@univr.it symbol phone-number 045 802 7910

Orlandi Giandomenico

symbol email giandomenico.orlandi at univr.it symbol phone-number 045 802 7986

Piccinelli Fabio

symbol email fabio.piccinelli@univr.it symbol phone-number +39 045 802 7097

Rizzi Romeo

symbol email romeo.rizzi@univr.it symbol phone-number +39 045 8027088

Sansonetto Nicola

symbol email nicola.sansonetto@univr.it symbol phone-number 049-8027932

Schuster Peter Michael

symbol email peter.schuster@univr.it symbol phone-number +39 045 802 7029

Solitro Ugo

symbol email ugo.solitro@univr.it symbol phone-number +39 045 802 7977

Zuccher Simone

symbol email simone.zuccher@univr.it

Piano Didattico

Il piano didattico è l'elenco degli insegnamenti e delle altre attività formative che devono essere sostenute nel corso della propria carriera universitaria.
Selezionare il piano didattico in base all'anno accademico di iscrizione.

CURRICULUM TIPO:
Attivato nell'A.A. 2018/2019
InsegnamentiCreditiTAFSSD
6
A
MAT/02
6
B
MAT/03
6
C
SECS-P/01
6
C
SECS-P/01
6
B
MAT/06
Attivato nell'A.A. 2019/2020
InsegnamentiCreditiTAFSSD
6
C
SECS-P/05
Prova finale
6
E
-

2° Anno Attivato nell'A.A. 2018/2019

InsegnamentiCreditiTAFSSD
6
A
MAT/02
6
B
MAT/03
6
C
SECS-P/01
6
C
SECS-P/01
6
B
MAT/06

3° Anno Attivato nell'A.A. 2019/2020

InsegnamentiCreditiTAFSSD
6
C
SECS-P/05
Prova finale
6
E
-
Insegnamenti Crediti TAF SSD
Tra gli anni: 1°- 2°- 3°
Tra gli anni: 1°- 2°- 3°
Altre attività formative
6
F
-

Legenda | Tipo Attività Formativa (TAF)

TAF (Tipologia Attività Formativa) Tutti gli insegnamenti e le attività sono classificate in diversi tipi di attività formativa, indicati da una lettera.




S Stage e tirocini presso imprese, enti pubblici o privati, ordini professionali

Codice insegnamento

4S00393

Crediti

12

Lingua di erogazione

Italiano

Settore Scientifico Disciplinare (SSD)

SECS-S/06 - METODI MATEMATICI DELL'ECONOMIA E DELLE SCIENZE ATTUARIALI E FINANZIARIE

Periodo

I semestre dal 1-ott-2019 al 31-gen-2020.

Obiettivi formativi

l corso si propone di introdurre i principali modelli quantitativi per l'analisi, la valutazione e la gestione delle attività finanziarie, e fornisce gli elementi fondamentali per lo studio quantitativo della finanza delle obbligazioni e delle azioni. Lo studente avrà la possibilità di apprendere la terminologia e i concetti adeguati per la comprensione e l’utilizzo degli strumenti della matematica finanziaria. Verrà stimolata la capacità critica di descrizione e sviluppo dei modelli di base della finanza con particolare attenzione alla gestione del profilo rischio-rendimento di un'attività finanziaria. Parallelamente, il corso sviluppa le principali metodologie quantitative utili come base per la partecipazione a corsi di finanza avanzati.

Programma

Parte 1: Matematica finanziaria classica - Testo di riferimento: Scandolo.

1) Regimi Finanziari: operazioni finanziarie, interesse semplice, interesse anticipato, capitalizzazione degli interessi, regime esponenziale.

2) Tassi di mercato. Sguardo alla teoria classica con avvertimenti sul fenomeno multi-curva.

3) Rendite e ammortamenti: investimenti e finanziamenti non elementari, rendite con rate costanti, rendite con rate in progressione geometrica, montante di una rendita, piani di ammortamento, forme comuni di ammortamento, ammortamenti a tasso variabile.

4) Scelta tra opzioni certe: rendimento per investimenti elementari, rendimento per investimenti generici, criteri di scelta per investimenti, criteri di scelta per finanziamenti

5) Obbligazioni: classificazione delle obbligazioni, obbligazioni senza cedole, obbligazioni con cedola fissa.

6) Struttura per scadenza dei tassi: curva dei rendimenti, curva dei tassi, mercati completi e incompleti

7) Immunizzazione finanziaria: duration di Macaulay, Convexity di Macaulay, portafogli immunizzati, strutture per scadenza generali.

Parte 2: finanza matematica moderna in condizioni di incertezza - Testi di riferimento: Föllmer Schied e Pascucci Runggaldier

8) Richiami di Fondamenti della teoria delle probabilità: spazi di probabilità, indipendenza, teorema di Radon-Nikodym, Valore atteso, Varianza, Valore atteso condizionale, Martingale, Convergenza di variabili aleatorie

9) Preferenze e avversione al rischio. Criterio dell’utilità attesa (Paradosso di San Pietroburgo). Assiomi di von Neumann Morgenstern, Dominanza stocastica. Criterio media-varianza e ottimizzazione statica di portafoglio. CAPM

10) Teoria dell’arbitraggio in un periodo: fondamenti e il teorema fondamentale dell’asset pricing, contingent claims, completezza del mercato.

11) Teoria dell’arbitraggio in modelli multiperiodali: fondamenti sui modelli multiperiodali, assenza di arbitraggio, contingent claims europei, modello binomiale (Cox-Ross-Rubinstein)

12) Contingent claims americani: fondamenti, valutazione e copertura in mercati completi, prezzi privi di arbitraggio e replicabilità in mercati generali.

13) Ottimizzazione dinamica di portafoglio in tempo discreto.

Testi di riferimento
Autore Titolo Casa editrice Anno ISBN Note
Pascucci, A. Runggaldier, W. J. Finanza matematica. Teoria e problemi per modelli multiperiodali (Edizione 1) Springer 2009 978-8-847-01441-1
Scandolo Giacomo Matematica Finanziaria Amon 2013
Scandolo Giacomo Matematica finanziaria - Esercizi Amon 2013
Föllmer, H. Schied, A. Stochastic Finance: An Introduction in Discrete Time (Edizione 4) De Gruyter 2016 978-3-110-46344-6

Modalità d'esame

Prova scritta di due ore. L’esame conterrà sia esercizi pratici, che domande di teoria, quali la richiesta di dimostrare enunciati. L'esame vuole verificare la capacità dello studente di identificare il corretto iter di risoluzione, la conoscenza delle leggi finanziarie di base e dei modelli di valutazione più sofisticati e la capacità di applicare le conoscenze acquisiti a casi concreti in contesti nuovi e variabili. L'esame si propone anche di valutare il livello di conoscenza degli aspetti teorici delle metodologie viste a lezione.

Le/gli studentesse/studenti con disabilità o disturbi specifici di apprendimento (DSA), che intendano richiedere l'adattamento della prova d'esame, devono seguire le indicazioni riportate QUI

Tipologia di Attività formativa D e F

Insegnamenti non ancora inseriti

Prospettive


Avvisi degli insegnamenti e del corso di studio

Per la comunità studentesca

Se sei già iscritta/o a un corso di studio, puoi consultare tutti gli avvisi relativi al tuo corso di studi nella tua area riservata MyUnivr.
In questo portale potrai visualizzare informazioni, risorse e servizi utili che riguardano la tua carriera universitaria (libretto online, gestione della carriera Esse3, corsi e-learning, email istituzionale, modulistica di segreteria, procedure amministrative, ecc.).
Entra in MyUnivr con le tue credenziali GIA: solo così potrai ricevere notifica di tutti gli avvisi dei tuoi docenti e della tua segreteria via mail e a breve anche tramite l'app Univr.

Prova Finale

Per gli scadenziari, gli adempimenti amministrativi e gli avvisi sulle sessioni di laurea, si rimanda al servizio Sessioni di laurea - Scienze e Ingegneria.

1. La prova finale prevede la preparazione sotto la guida di un relatore di un elaborato scritto (tesi), che può consistere nella trattazione di un argomento teorico, o nella risoluzione di un problema specifico, o nella descrizione di un progetto di lavoro, o di un'esperienza fatta in un'azienda, in un laboratorio, in una scuola ecc. La tesi, preferibilmente redatta in TeX/LaTeX/AMSTeX e usando il pacchetto LaTeX Frontespizio, può essere inviata preliminarmente in formato elettronico ai membri della Commissione Valutazione Tesi e dovrà essere presentata, in duplice copia, al momento della discussione. La tesi potrà essere redatta anche in lingua inglese.
2. La discussione della tesi, che dovrà durare indicativamente tra i venti e i trenta minuti, avverrà davanti ad una Commissione Valutazione Tesi nominata dal Presidente del collegio Didattico di Matematica. ll Presidente della commissione è il professore di ruolo di più alto grado accademico. La Commissione Valutazione Tesi è composta da almeno tre Docenti tra cui possibilmente il Relatore. Ogni Commissione Valutazione Tesi potrà valutare più studenti in funzione del contenuto del lavoro da essi presentato. La discussione della tesi viene effettuata durante i trenta giorni precedenti la data stabilita per la sessione di Laurea, ne viene data adeguata comunicazione ed è aperta al pubblico.
3. La Commissione Valutazione Tesi attribuisce ad ogni studente un punteggio della prova finale che va da zero a cinque. La valutazione della prova finale si articola in maniera tale da tenere conto delle conoscenze acquisite dallo studente durante il lavoro di tesi, del loro grado di comprensione, dell'autonomia di giudizio, delle capacità dimostrate dallo studente di applicare dette conoscenze e di comunicare efficacemente e compiutamente l'insieme degli esiti del lavoro ed i principali risultati ottenuti (si vedano la Tabella 1 per tesi di laurea triennale e la Tabella 2 per tesi di laurea magistrale, in calce al presente regolamento). Il Presidente della Commissione Valutazione Tesi invia una relazione, firmata da tutti i componenti della Commissione, al Presidente della Commissione di Esame Finale indicando per ogni studente il punteggio attribuito per l'esame finale ed un eventuale breve giudizio.
4. La Commissione di Esame Finale, unica per tutti gli studenti di quella sessione di Laurea, viene nominata dal Presidente del Collegio Didattico di Matematica. Il Presidente della commissione è il professore di ruolo di più alto grado accademico. La Commissione di Esame Finale deve essere composta da un Presidente e almeno da altri quattro Commissari scelti tra i docenti dell'Ateneo.
5. La Commissione di Esame Finale determina per ogni studente il punteggio finale sommando la media, pesata rispetto ai relativi CFU, espressa in centodecimi, dei voti degli esami del piano di studi, escluse le attività in sovrannumero, con il punteggio della prova finale. Aggiunge inoltre il punteggio attribuito alla carriera dello studente, da zero a due (si veda la Tabella 3, in calce al presente regolamento). Il voto finale, espresso in centodecimi, si ottiene arrotondando all'intero più vicino (all'intero superiore, in caso di equidistanza) il punteggio ottenuto, senza eccedere 110 centodecimi e assegnando la lode solo con l'unanimità della Commissione di Esame Finale al candidato che abbia raggiunto i 110 centodecimi dopo l'arrotondamento.
6. La Commissione di Esame Finale procede alla proclamazione dei nuovi Laureati in Matematica Applicata o Laureati magistrali in Mathematics con una cerimonia pubblica ed ufficiale.
 

Allegati

Titolo Info File
Doc_Univr_pdf 1. Come scrivere una tesi 31 KB, 29/07/21 
Doc_Univr_pdf 2. How to write a thesis 31 KB, 29/07/21 
Doc_Univr_pdf 5. Regolamento tesi (valido da luglio 2022) 171 KB, 17/02/22 

Elenco delle proposte di tesi e stage

Proposte di tesi Area di ricerca
Formule di rappresentazione per gradienti generalizzati Mathematics - Analysis
Formule di rappresentazione per gradienti generalizzati Mathematics - Mathematics
Proposte Tesi A. Gnoatto Argomenti vari
Tesi assegnate a studenti di matematica Argomenti vari
Stage Area di ricerca
Proposte di stage per studenti di matematica Argomenti vari

Erasmus+ e altre esperienze all’estero


Modalità di frequenza

Come riportato al punto 28 del Regolamento Didattico per l'A.A. 2022/2023, la frequenza è in generale non obbligatoria, con la sola eccezione di alcune attività laboratoriali. Per queste sarà chiaramente indicato nella scheda del corrispondente insegnamento l'ammontare di ore per cui è richiesta la frequenza obbligatoria.
Per le modalità di erogazione della didattica, si rimanda alle informazioni in costante aggiornamento dell'Unità di Crisi.


Gestione carriere


Area riservata studenti