Studiare

In questa sezione è possibile reperire le informazioni riguardanti l'organizzazione pratica del corso, lo svolgimento delle attività didattiche, le opportunità formative e i contatti utili durante tutto il percorso di studi, fino al conseguimento del titolo finale.

Piano Didattico

Il piano didattico è l'elenco degli insegnamenti e delle altre attività formative che devono essere sostenute nel corso della propria carriera universitaria.
Selezionare il piano didattico in base all'anno accademico di iscrizione.

CURRICULUM TIPO:

2° Anno   Attivato nell'A.A. 2019/2020

InsegnamentiCreditiTAFSSD
6
A
MAT/02
6
B
MAT/03
6
C
SECS-P/01
6
C
SECS-P/01
6
B
MAT/06
Lingua inglese competenza linguistica - liv. B1 (completo)
6
E
-

3° Anno   Attivato nell'A.A. 2020/2021

InsegnamentiCreditiTAFSSD
6
C
SECS-P/05
Prova finale
6
E
-
Attivato nell'A.A. 2019/2020
InsegnamentiCreditiTAFSSD
6
A
MAT/02
6
B
MAT/03
6
C
SECS-P/01
6
C
SECS-P/01
6
B
MAT/06
Lingua inglese competenza linguistica - liv. B1 (completo)
6
E
-
Attivato nell'A.A. 2020/2021
InsegnamentiCreditiTAFSSD
6
C
SECS-P/05
Prova finale
6
E
-
Insegnamenti Crediti TAF SSD
Tra gli anni: 1°- 2°- 3°
Tra gli anni: 1°- 2°- 3°
Ulteriori attività formative
6
F
-

Legenda | Tipo Attività Formativa (TAF)

TAF (Tipologia Attività Formativa) Tutti gli insegnamenti e le attività sono classificate in diversi tipi di attività formativa, indicati da una lettera.




S Stage e tirocini presso imprese, enti pubblici o privati, ordini professionali

Codice insegnamento

4S00247

Crediti

6

Lingua di erogazione

Italiano

Settore Scientifico Disciplinare (SSD)

MAT/03 - GEOMETRIA

Periodo

I semestre dal 1 ott 2019 al 31 gen 2020.

Obiettivi formativi

L'insegnamento si propone di fornire allo studente i concetti fondamentali della topologia generale e le basi della geometria differenziale delle curve e delle superfici immerse in uno spazio euclideo.

Al termine dell'insegnamento lo studente conoscerà le principali proprietà degli spazi topologici. Inoltre sarà in grado di riconoscere e calcolare le caratteristiche geometriche principali di curve e superfici immerse (triedo di riferimento, curvature, forme quadratiche fondamentali...). Sarà inoltre in grado di produrre argomentazioni e dimostrazioni rigorose su questi temi e sarà in grado di leggere articoli e testi di Topologia e Geometria Differenziale.

Programma

L'insegnamento prevede lezioni frontali di teoria ed esercitazioni. Saranno inoltre previste 12 ore di tutorato che si concentrerà in particolare sulla risoluzione di esercizi di topologia.

A seguire un programma dettagliato del corso:

-Topologia generale.

Spazio topologico, definizione per aperti e per chiusi. Esempi: topologia banale, discreta, cofinita. Finezza di una topologia. Basi di aperti. Intorni. Sistema fondamentale di intorni. Chiusura, interno. Applicazioni continue. Omeomorfismi. Punti di frontiera, isolati, aderenza e accumulazione. Insiemi densi. Sottospazi, topologia indotta. Prodotto di spazi e topologia prodotto.
Assiomi di separazione. Spazi di Hausdorff, Regolari e Normali.
Assiomi di numerabilità: primo assioma e secondo assioma.
Quozienti e topologia quoziente. Applicazioni aperte e chiuse.
Esempi di spazi topologici: sfere, spazio proiettivo, nastro di Moebius....
Proprietà di compattezza. Teorema di Heine-Borel. Teorema di Tychonoff. Teorema di Bolzano-Weierstrass.
Connessione. Locale connessione. Connessione per archi. Esempi e controesempi: curva del topologo. Connesso e localmente connesso per archi implica connesso per archi. Semplice connessione, omotopia e gruppo fondamentale (cenni).

-Geometria differenziale delle curve nel piano e nello spazio.

Curve differenziabili nel piano:
Esempi notevoli. Punti regolari e singolari. Immersioni locali, immersioni e immersioni regolari. Lunghezza di un arco. Ascissa curvilinea. Punti di flesso. Curvatura e raggio di curvatura. Centro di curvatura. Formule di Frenet-Serret.

Curve differenziabili nello spazio:
Retta tangente. Piano normale. Flessi. Piano osculatore. Punti stazionari. Curvature. Triedo principale. Formule di Frenet-Serret. Torsione. Teorema Fondamentale della teoria locale delle curve.

-Geometria differenziale delle superfici nello spazio.

Definizione. Atlante differenziabile, atlante orientato, piano tangente, versore normale.
Prima forma quadratica fondamentale: metrica e area. Curvatura tangenziale e curvatura normale di una curva su una superficie. Curvature, sezioni normali, Teorema di Meusnier. Curvature principali, curvatura Gaussiana e curvatura media: Teorema Egregium. Geodetiche.

Testi di riferimento
Autore Titolo Casa editrice Anno ISBN Note
Abate, Tovena Curve e Superfici (Edizione 1) Springer 2006
Kosniowski Introduzione alla topologia algebrica (Edizione 1) Zanichelli 1988

Modalità d'esame

Per superare l'esame gli studenti devono dimostrare di:
- conoscere e aver compreso i concetti fondamentali della topologia generale
- conoscere e aver compreso i concetti fondamentali della teoria locale delle curve e delle superfici
- avere un'adeguata capacità di analisi e sintesi e di astrazione
- sapere applicare queste conoscenze per risolvere problemi ed esercizi, sapendo argomentare i loro ragionamenti con rigore matematico.

Prova scritta (2 ore).
L'esame consiste nella risoluzione di 4 esercizi (2 di topologia, 1 di teoria delle curve e 1 di teoria delle superfici) più due domande di teoria (1 su definizioni/concetti generali e 1 con dimostrazione di un teorema presentato a lezione).

Prova orale (facoltativa)
Prevede una discussione con il docente sulle definizioni e dimostrazioni discusse durante le lezioni.

Le/gli studentesse/studenti con disabilità o disturbi specifici di apprendimento (DSA), che intendano richiedere l'adattamento della prova d'esame, devono seguire le indicazioni riportate QUI