Studying at the University of Verona
Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.
Academic calendar
The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.
Course calendar
The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..
Period | From | To |
---|---|---|
I semestre | Oct 1, 2019 | Jan 31, 2020 |
II semestre | Mar 2, 2020 | Jun 12, 2020 |
Session | From | To |
---|---|---|
Sessione invernale d'esame | Feb 3, 2020 | Feb 28, 2020 |
Sessione estiva d'esame | Jun 15, 2020 | Jul 31, 2020 |
Sessione autunnale d'esame | Sep 1, 2020 | Sep 30, 2020 |
Session | From | To |
---|---|---|
Sessione Estiva | Jul 15, 2020 | Jul 15, 2020 |
Sessione Autunnale | Oct 16, 2020 | Oct 16, 2020 |
Sessione Autunnale Dicembre | Dec 11, 2020 | Dec 11, 2020 |
Sessione Invernale | Mar 17, 2021 | Mar 17, 2021 |
Period | From | To |
---|---|---|
Festa di Ognissanti | Nov 1, 2019 | Nov 1, 2019 |
Festa dell'Immacolata | Dec 8, 2019 | Dec 8, 2019 |
Vacanze di Natale | Dec 23, 2019 | Jan 6, 2020 |
Vacanze di Pasqua | Apr 10, 2020 | Apr 14, 2020 |
Festa della Liberazione | Apr 25, 2020 | Apr 25, 2020 |
Festa del lavoro | May 1, 2020 | May 1, 2020 |
Festa del Santo Patrono | May 21, 2020 | May 21, 2020 |
Festa della Repubblica | Jun 2, 2020 | Jun 2, 2020 |
Vacanze estive | Aug 10, 2020 | Aug 23, 2020 |
Exam calendar
Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.
Academic staff
Ugolini Simone
simone.ugolini@univr.itStudy Plan
The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.
1° Year
Modules | Credits | TAF | SSD |
---|
Mathematical analysis 1
Computer Architecture
2° Year activated in the A.Y. 2020/2021
Modules | Credits | TAF | SSD |
---|
3° Year activated in the A.Y. 2021/2022
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Mathematical analysis 1
Computer Architecture
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Legend | Type of training activity (TTA)
TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.
Computer Architecture [Matricole dispari] (2019/2020)
Teaching code
4S00011
Credits
12
Language
Italian
Scientific Disciplinary Sector (SSD)
ING-INF/05 - INFORMATION PROCESSING SYSTEMS
The teaching is organized as follows:
Teoria
Laboratorio
Esercitazioni
Learning outcomes
This course presents the theoretical and practical knowledge to implement an algorithm into a digital architecture. Some design alternatives are presented ranging from a pure software, running on a general purpose computer, to an ad-hoc hardware implementation. At the end of the course, the student shall prove: to possess the practical and theoretical notions required for the digital realization of an algorithm, along with an understanding of the issues related to hardware implementation of such algorithms; to be able to apply the acquired notions for the identification of the requirements of a machine able to realize the given task; to evaluate the underlying complexity of the digital realization; to be able to present the main features of a project developed autonomously, and to interact with colleagues when working on a common project; to be able to autonomously build the competences required to continue studies in the field of digital systems design.
Program
Theory
----------
* Fundamentals:
- information coding,
- Boolean functions,
- arithmetic.
* Digital devices design:
- combinational circuits,
- sequential circuits,
- controller-datapath circuits,
- programmable units.
* Computer architecture:
- basic principles,
- instruction set,
- elaboration unit,
- memory hierarchy,
- I/O organization,
- actual architectures (cache, virtual memory, pipeline),
- parallel architectures.
Laboratory:
-----------------
* Automatic design of a programmable device
* Assembly programming of the Intel 80X86 architecture
* Interaction between assembly and high-level code
Bibliography
Activity | Author | Title | Publishing house | Year | ISBN | Notes |
---|---|---|---|---|---|---|
Teoria | C. Hamacher, Z. Vranesic, S. Zaky, N. Manjikian | Introduzione all'architettura dei calcolatori (Edizione 1) | McGraw-Hill | 2012 | 9788838667510 | seconda parte del corso |
Teoria | Franco Fummi, Mariagiovanna Sami, Cristina Silvano | Progettazione Digitale (Edizione 2) | McGraw-Hill | 2007 | 8838663521 | prima parte del corso |
Examination Methods
To pass the exam, the students must show that:
- they are able to design a digital device,
- they have understood the principles of a computer architecture,
- they are able to program in assembly code by correcly interacting with all computer components,
- they are able to apply the acquired knowledge to solve application scenarios described by means of exercises,, questions and projects.
Theory comprehension is checked through a written examination, eventually divided in parts that will be checked during each semester.
Practical skills are evaluated through two designs which can have a maximal impact of 4/30 on the final mark.
Theory without practical marks are preserved through examination sessions at the cost of a reduction.
Teaching materials e documents
- Orario Dettagliato II Semestre (it, 76 KB, 02/04/20)
- Orario Dettagliato I Semestre (it, 71 KB, 30/09/19)
Type D and Type F activities
years | Modules | TAF | Teacher |
---|---|---|---|
3° | The fashion lab (1 ECTS) | D |
Maria Caterina Baruffi
(Coordinator)
|
years | Modules | TAF | Teacher |
---|---|---|---|
3° | Control theory | D |
Riccardo Muradore
(Coordinator)
|
3° | Biomedical Data and Signal Processing | D |
Silvia Francesca Storti
(Coordinator)
|
3° | Python programming language | D |
Maurizio Boscaini
(Coordinator)
|
years | Modules | TAF | Teacher |
---|---|---|---|
3° | CyberPhysical Laboratory | D |
Andrea Calanca
(Coordinator)
|
3° | C++ Programming Language | D |
Federico Busato
(Coordinator)
|
3° | LaTeX Language | D |
Enrico Gregorio
(Coordinator)
|
3° | Matlab-Simulink programming | D |
Bogdan Mihai Maris
(Coordinator)
|
years | Modules | TAF | Teacher |
---|---|---|---|
3° | Corso Europrogettazione | D | Not yet assigned |
3° | The course provides an introduction to blockchain technology. It focuses on the technology behind Bitcoin, Ethereum, Tendermint and Hotmoka. | D |
Matteo Cristani
|
Career prospects
Module/Programme news
News for students
There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details: only in this way will you be able to receive notification of all the notices from your teachers and your secretariat via email and also via the Univr app.
Graduation
List of thesis proposals
theses proposals | Research area |
---|---|
Analisi e percezione dei segnali biometrici per l'interazione con robot | AI, Robotics & Automatic Control - AI, Robotics & Automatic Control |
Integrazione del simulatore del robot Nao con Oculus Rift | AI, Robotics & Automatic Control - AI, Robotics & Automatic Control |
Domain Adaptation | Computer Science and Informatics: Informatics and information systems, computer science, scientific computing, intelligent systems - Computer graphics, computer vision, multi media, computer games |
Domain Adaptation | Computer Science and Informatics: Informatics and information systems, computer science, scientific computing, intelligent systems - Machine learning, statistical data processing and applications using signal processing (e.g. speech, image, video) |
BS or MS theses in automated reasoning | Computing Methodologies - ARTIFICIAL INTELLIGENCE |
Domain Adaptation | Computing Methodologies - IMAGE PROCESSING AND COMPUTER VISION |
Domain Adaptation | Computing methodologies - Machine learning |
Dati geografici | Information Systems - INFORMATION SYSTEMS APPLICATIONS |
Analisi e percezione dei segnali biometrici per l'interazione con robot | Robotics - Robotics |
Integrazione del simulatore del robot Nao con Oculus Rift | Robotics - Robotics |
BS or MS theses in automated reasoning | Theory of computation - Logic |
BS or MS theses in automated reasoning | Theory of computation - Semantics and reasoning |
Proposte di tesi/collaborazione/stage in Intelligenza Artificiale Applicata | Various topics |
Proposte di Tesi/Stage/Progetto nell'ambito dell'analisi dei dati | Various topics |
Attendance modes and venues
As stated in the Teaching Regulations, attendance at the course of study is not mandatory.
Part-time enrolment is permitted. Find out more on the Part-time enrolment possibilities page.
The course's teaching activities take place in the Science and Engineering area, which consists of the buildings of Ca‘ Vignal 1, Ca’ Vignal 2, Ca' Vignal 3 and Piramide, located in the Borgo Roma campus.
Lectures are held in the classrooms of Ca‘ Vignal 1, Ca’ Vignal 2 and Ca' Vignal 3, while practical exercises take place in the teaching laboratories dedicated to the various activities.