Studiare

In questa sezione è possibile reperire le informazioni riguardanti l'organizzazione pratica del corso, lo svolgimento delle attività didattiche, le opportunità formative e i contatti utili durante tutto il percorso di studi, fino al conseguimento del titolo finale.

Calendario accademico

Il calendario accademico riporta le scadenze, gli adempimenti e i periodi rilevanti per la componente studentesca, personale docente e personale dell'Università. Sono inoltre indicate le festività e le chiusure ufficiali dell'Ateneo.
L’anno accademico inizia il 1° ottobre e termina il 30 settembre dell'anno successivo.

Calendario accademico

Calendario didattico

Il calendario didattico indica i periodi di svolgimento delle attività formative, di sessioni d'esami, di laurea e di chiusura per le festività.

Definizione dei periodi di lezione
Periodo Dal Al
I semestre 1-ott-2019 31-gen-2020
II semestre 2-mar-2020 12-giu-2020
Sessioni degli esami
Sessione Dal Al
Sessione invernale d'esame 3-feb-2020 28-feb-2020
Sessione estiva d'esame 15-giu-2020 31-lug-2020
Sessione autunnale d'esame 1-set-2020 30-set-2020
Sessioni di lauree
Sessione Dal Al
Sessione Estiva. 16-lug-2020 16-lug-2020
Sessione Autunnale. 15-ott-2020 15-ott-2020
Sessione Invernale. 18-mar-2021 18-mar-2021
Vacanze
Periodo Dal Al
Festa di Ognissanti 1-nov-2019 1-nov-2019
Festa dell'Immacolata 8-dic-2019 8-dic-2019
Vacanze di Natale 23-dic-2019 6-gen-2020
Vacanze di Pasqua 10-apr-2020 14-apr-2020
Festa della Liberazione 25-apr-2020 25-apr-2020
Festa del lavoro 1-mag-2020 1-mag-2020
Festa del Santo Patrono 21-mag-2020 21-mag-2020
Festa della Repubblica 2-giu-2020 2-giu-2020
Vacanze estive 10-ago-2020 23-ago-2020

Calendario esami

Gli appelli d'esame sono gestiti dalla Unità Operativa Segreteria Corsi di Studio Scienze e Ingegneria.
Per consultazione e iscrizione agli appelli d'esame visita il sistema ESSE3.
Per problemi inerenti allo smarrimento della password di accesso ai servizi on-line si prega di rivolgersi al supporto informatico della Scuola o al servizio recupero credenziali

Calendario esami

Per dubbi o domande leggi le risposte alle domande più frequenti F.A.Q. Iscrizione Esami

Docenti

B C D F G M O P Q R S V

Baruffi Maria Caterina

symbol email mariacaterina.baruffi@univr.it

Belussi Alberto

symbol email alberto.belussi@univr.it symbol phone-number +39 045 802 7980

Bombieri Nicola

symbol email nicola.bombieri@univr.it symbol phone-number +39 045 802 7094

Bonacina Maria Paola

symbol email mariapaola.bonacina@univr.it symbol phone-number +39 045 802 7046

Boscaini Maurizio

symbol email maurizio.boscaini@univr.it

Busato Federico

symbol email federico.busato@univr.it

Calanca Andrea

symbol email andrea.calanca@univr.it symbol phone-number +39 045 802 7847

Carra Damiano

symbol email damiano.carra@univr.it symbol phone-number +39 045 802 7059

Castellani Umberto

symbol email umberto.castellani@univr.it symbol phone-number +39 045 802 7988

Cicalese Ferdinando

symbol email ferdinando.cicalese@univr.it symbol phone-number +39 045 802 7969

Cristani Matteo

symbol email matteo.cristani@univr.it symbol phone-number 045 802 7983

Cristani Marco

symbol email marco.cristani@univr.it symbol phone-number +39 045 802 7841

Cubico Serena

symbol email serena.cubico@univr.it symbol phone-number 045 802 8132

Dall'Alba Diego

symbol email diego.dallalba@univr.it symbol phone-number +39 045 802 7074

Dalla Preda Mila

symbol email mila.dallapreda@univr.it

Farinelli Alessandro

symbol email alessandro.farinelli@univr.it symbol phone-number +39 045 802 7842

Favretto Giuseppe

symbol email giuseppe.favretto@univr.it symbol phone-number +39 045 802 8749 - 8748

Fiorini Paolo

symbol email paolo.fiorini@univr.it symbol phone-number 045 802 7963

Franco Giuditta

symbol email giuditta.franco@univr.it symbol phone-number +39 045 802 7045

Fummi Franco

symbol email franco.fummi@univr.it symbol phone-number 045 802 7994

Giachetti Andrea

symbol email andrea.giachetti@univr.it symbol phone-number +39 045 8027998

Giacobazzi Roberto

symbol email roberto.giacobazzi@univr.it symbol phone-number +39 045 802 7995

Maris Bogdan Mihai

symbol email bogdan.maris@univr.it symbol phone-number +39 045 802 7074

Masini Andrea

symbol email andrea.masini@univr.it symbol phone-number 045 802 7922

Mastroeni Isabella

symbol email isabella.mastroeni@univr.it symbol phone-number +390458027089

Menegaz Gloria

symbol email gloria.menegaz@univr.it symbol phone-number +39 045 802 7024

Merro Massimo

symbol email massimo.merro@univr.it symbol phone-number 045 802 7992

Muradore Riccardo

symbol email riccardo.muradore@univr.it symbol phone-number +39 045 802 7835

Murino Vittorio

symbol email vittorio.murino@univr.it symbol phone-number 045 802 7996

Oliboni Barbara

symbol email barbara.oliboni@univr.it symbol phone-number +39 045 802 7077

Paci Federica Maria Francesca

symbol email federicamariafrancesca.paci@univr.it symbol phone-number +39 045 802 7909

Pravadelli Graziano

symbol email graziano.pravadelli@univr.it symbol phone-number +39 045 802 7081

Quaglia Davide

symbol email davide.quaglia@univr.it symbol phone-number +39 045 802 7811

Rizzi Romeo

symbol email romeo.rizzi@univr.it symbol phone-number +39 045 8027088

Romeo Alessandro

symbol email alessandro.romeo@univr.it symbol phone-number +39 045 802 7936; Lab: +39 045 802 7808

Segala Roberto

symbol email roberto.segala@univr.it symbol phone-number 045 802 7997

Villa Tiziano

symbol email tiziano.villa@univr.it symbol phone-number +39 045 802 7034

Piano Didattico

Il piano didattico è l'elenco degli insegnamenti e delle altre attività formative che devono essere sostenute nel corso della propria carriera universitaria.
Selezionare il piano didattico in base all'anno accademico di iscrizione.

CURRICULUM TIPO:

1° Anno 

InsegnamentiCreditiTAFSSD
12
B
ING-INF/05
12
B
INF/01
12
B
ING-INF/05

2° Anno   Attivato nell'A.A. 2020/2021

InsegnamentiCreditiTAFSSD
6
B
INF/01
Altre attività formative
4
F
-
Prova finale
24
E
-
InsegnamentiCreditiTAFSSD
12
B
ING-INF/05
12
B
INF/01
12
B
ING-INF/05
Attivato nell'A.A. 2020/2021
InsegnamentiCreditiTAFSSD
6
B
INF/01
Altre attività formative
4
F
-
Prova finale
24
E
-
Insegnamenti Crediti TAF SSD
Tra gli anni: 1°- 2°

Legenda | Tipo Attività Formativa (TAF)

TAF (Tipologia Attività Formativa) Tutti gli insegnamenti e le attività sono classificate in diversi tipi di attività formativa, indicati da una lettera.




S Stage e tirocini presso imprese, enti pubblici o privati, ordini professionali

Codice insegnamento

4S02789

Crediti

12

Coordinatore

Massimo Merro

Lingua di erogazione

Italiano

L'insegnamento è organizzato come segue:

LINGUAGGI

Crediti

6

Periodo

I semestre

INTELLIGENZA ARTIFICIALE

Crediti

6

Periodo

Vedi pagina del modulo

Docenti

Vedi pagina del modulo

Obiettivi formativi

L'obiettivo del corso è quello di presentare: (i) le basi teoriche dei linguaggi di programmazione; (ii) i paradigmi e le tecniche principali della rappresentazione simbolica e soluzione automatica di problemi. A tale scopo, nel modulo di Linguaggi, verranno studiati vari linguaggi paradigmatici, anche di ordine superiore. Il modulo sarà incentrato sui concetti di semantica operazionale e di sistema di tipo. Invece, nel modulo di Intelligenza artificiale vengono forniti gli strumenti per ideare, applicare e valutare algoritmi per problemi difficili. La soluzione meccanizzata di tali problemi cattura aspetti di intelligenza artificiale o razionalità computazionale.

Programma

Si rimanda ai programmi dei due moduli che costituiscono l'insegnamento.

Bibliografia

Testi di riferimento
Autore Titolo Casa editrice Anno ISBN Note
Carl A. Gunter Semantics of Programming Languages MIT Press 1992 0262570955
Peter Sewell Semantics of Programming Languages (Edizione 6) Cambridge University Press 2019
G. Winskel The formal Semantics of Programming Languages MIT Press 1993
Benjamin Pierce Types and Programming Languages (Edizione 1) MIT Press 2002 ISBN-10: 0262162091
Stuart Russell, Peter Norvig Artificial Intelligence: A Modern Approach (Edizione 2) Prentice Hall 2003 0137903952
Rina Dechter Constraint Processing (Edizione 1) Morgan Kaufmann 2003 ISBN 978-1-55860-890-0
Richard S. Satto and Andrew G. Barto Reinforcement Learning: an introduction MIT press 1998 ISBN 0-262-19398-1

Modalità d'esame

Il candidato deve superare gli esami di entrambi i moduli con una votazione maggiore o uguale a 18/30. La votazione dell'intero insegnamento si ricava dalla media per eccesso delle votazioni conseguite nei due moduli.

Le/gli studentesse/studenti con disabilità o disturbi specifici di apprendimento (DSA), che intendano richiedere l'adattamento della prova d'esame, devono seguire le indicazioni riportate QUI

Tipologia di Attività formativa D e F

Documenti e avvisi

1° periodo di lezioni Dal 30/09/19 Al 14/12/19
anni Insegnamenti TAF Docente
1° 2° Lab.: The fashion lab (1 cfu) D Non ancora assegnato
I semestre Dal 01/10/19 Al 31/01/20
anni Insegnamenti TAF Docente
1° 2° Linguaggio programmazione Python D Maurizio Boscaini (Coordinatore)
II semestre Dal 02/03/20 Al 12/06/20
anni Insegnamenti TAF Docente
1° 2° Laboratorio ciberfisico D Andrea Calanca (Coordinatore)
1° 2° Linguaggio Programmazione C++ D Federico Busato (Coordinatore)
1° 2° Linguaggio Programmazione Matlab-Simulink D Bogdan Mihai Maris (Coordinatore)
Elenco degli insegnamenti con periodo non assegnato
anni Insegnamenti TAF Docente
1° 2° Corso Europrogettazione D Non ancora assegnato
1° 2° Minicorso Blockchain D Matteo Cristani

Prospettive


Avvisi degli insegnamenti e del corso di studio

Per la comunità studentesca

Se sei già iscritta/o a un corso di studio, puoi consultare tutti gli avvisi relativi al tuo corso di studi nella tua area riservata MyUnivr.
In questo portale potrai visualizzare informazioni, risorse e servizi utili che riguardano la tua carriera universitaria (libretto online, gestione della carriera Esse3, corsi e-learning, email istituzionale, modulistica di segreteria, procedure amministrative, ecc.).
Entra in MyUnivr con le tue credenziali GIA: solo così potrai ricevere notifica di tutti gli avvisi dei tuoi docenti e della tua segreteria via mail e anche tramite l'app Univr.

Prova Finale

Scadenziari e adempimenti amministrativi

Per gli scadenziari, gli adempimenti amministrativi e gli avvisi sulle sessioni di laurea, si rimanda al servizio Sessioni di laurea - Scienze e Ingegneria.

Necessità di attivare un tirocinio per tesi

Per stage finalizzati alla stesura della tesi di laurea, non è sempre necessaria l'attivazione di un tirocinio tramite l'Ufficio Stage. Per maggiori informazioni, consultare il documento dedicato, che si trova nella sezione "Documenti" del servizio dedicato agli stage e ai tirocini.

Regolamento della prova finale

Alla tesi di laurea sono dedicati 24 CFU, per un lavoro che non deve superare i 4-5 mesi a tempo pieno per la/o studentessa/studente.

Scopo della Tesi di Laurea

La Tesi di Laurea costituisce un importante ed imprescindibile passo nella formazione della/del futura/o laureata/o Magistrale in Ingegneria e Scienze Informatiche. Scopo della tesi è quello di sviluppare uno studio quanto più originale che può culminare con un progetto applicativo o un risultato teorico connesso a specifici problemi di natura progettuale o una rassegna critica sullo stato dell'arte in un determinato ambito di studio. Su proposta della/del relatrice/relatore, può essere compilato e discusso in lingua straniera. Nel corso dello svolgimento della Tesi il laureando dovrà, sotto la guida della relatrice/relatore ed eventuali correlatrici/correlatori, affrontare lo studio e l'approfondimento degli argomenti scelti, ma anche acquisire capacità di sintesi e applicazione creativa delle conoscenze acquisite. Il contenuto della Tesi deve essere inerente a tematiche dell'ingegneria e delle Scienze Informatiche o discipline strettamente correlate. La Tesi consiste nella presentazione in forma scritta di attività che possono essere articolate come:

  1. progettazione e sviluppo di applicazioni o sistemi;
  2. analisi critica di contributi tratti dalla letteratura scientifica;
  3. contributi originali di ricerca.

La Tesi può essere redatta sia in lingua inglese che in lingua italiana, e può essere discussa sia in inglese che in italiano, anche mediante l'ausilio di supporti multimediali quali slide, filmati, immagini e suoni. Nel caso di tesi redatta in lingua italiana alla medesima dovrà essere aggiunto un breve riassunto in lingua inglese.

Modalità di svolgimento e valutazione

Ogni Tesi di Laurea può essere interna o esterna a seconda che sia svolta presso l'Università di Verona o in collaborazione con altro ente, rispettivamente. Ogni Tesi prevede una/un relatrice/relatore eventualmente affiancata/o da una/uno o più correlatrici/correlatori e una/un controrelatrice/controrelatore. La/il controrelatrice/controrelatore è nominata/o dal Collegio Didattico di Informatica almeno 20 giorni prima della discussione della Tesi, verificata l'ammissibilità della/o studentessa/studente a sostenere l’esame di Laurea Magistrale. Per quanto riguarda gli aspetti giuridici (e.g., proprietà intellettuale dei risultati) legati alla Tesi e ai risultati ivi contenuti si rimanda alla legislazione vigente in materia ed ai Regolamenti di Ateneo.

Valutazione delle Tesi

I criteri su cui sono chiamati ad esprimersi relatore ed eventuali correlatori e controrelatore sono i seguenti:

  1. livello di approfondimento del lavoro svolto, in relazione allo stato dell'arte dei settori disciplinari di pertinenza informatica;
  2. avanzamento conoscitivo o tecnologico apportato dalla Tesi;
  3. impegno critico espresso dalla/dal laureanda/o;
  4. impegno sperimentale e/o di sviluppo formale espresso dal laureando;
  5. autonomia di lavoro espressa dalla/dal laureanda/o;
  6. significatività delle metodologie impiegate;
  7. accuratezza dello svolgimento e della scrittura;
  8. la/il controrelatrice/controrelatore non è chiamata/o ad esprimersi sul punto 5.

Voto di Laurea

Il voto di Laurea (espresso in 110mi) è un valore intero compreso tra 66/110 e 110/110 e viene formato dalla somma, arrotondata al numero intero più vicino (e.g., 93.50 diventa 94, 86.49 diventa 86), dei seguenti addendi:

  • 1. media pesata sui crediti e rapportata a 110 dei voti conseguiti negli esami di profitto;
  • 2. valutazione del colloquio di Laurea e della Tesi secondo le seguenti modalità:
    • a. attribuzione di un coefficiente compreso tra 0 e 1 (frazionario con una cifra decimale) per ciascuno dei punti 1-7 elencati sopra;
    • b. attribuzione di un coefficiente compreso tra 0 e 1 (frazionario con una cifra decimale) per la qualità della presentazione;
    • c. somma dei coefficienti attribuiti ai punti a e b.

La presenza di eventuali lodi ottenute negli esami sostenuti, la partecipazione a stage ufficialmente riconosciuti dal Collegio Didattico di Informatica, il superamento di esami in soprannumero ed il raggiungimento della Laurea in tempi contenuti rispetto alla durata legale del corso degli studi possono essere utilizzati dalla Commissione di Laurea per attribuire un ulteriore incremento di un punto.

Qualora la somma ottenuta raggiunga 110/110, la Commissione può decidere l'attribuzione della lode. La lode viene proposta e discussa dalla Commissione, senza l'adozione di particolari meccanismi di calcolo automatico. In base alle norme vigenti, la lode viene attribuita solo se il parere è unanime.

Tesi esterne

Una Tesi esterna viene svolta in collaborazione con un ente diverso dall'Università di Verona. In tal caso, la/il laureanda/o dovrà preventivamente concordare il tema della Tesi con una/un relatrice/relatore dell'Ateneo. Inoltre, è previsto almeno una/un correlatrice/correlatore appartenente all'ente esterno, quale riferimento immediato per la/o studentessa/studente nel corso dello svolgimento dell’attività di Tesi. Relatrice/relatore e correlatrici/correlatori devono essere indicate/i nella domanda di assegnazione Tesi. Le modalità assicurative della permanenza della/o studentessa/studente presso l'Ente esterno sono regolate dalle norme vigenti presso l'Università di Verona. Se la Tesi si configura come un periodo di formazione presso tale ente, allora è necessario stipulare una convenzione tra l'Università e detto ente. I risultati contenuti nella Tesi sono patrimonio in comunione di tutte le persone ed enti coinvolti. In particolare, i contenuti ed i risultati della Tesi sono da considerarsi pubblici. Per tutto quanto riguarda aspetti non strettamente scientifici (e.g. convenzioni, assicurazioni) ci si rifà alla delibera del SA. del 12 gennaio 1999

Relatrice/relatore,correlatrici/correlatori,controrelatrici/controrelatori

La Tesi di Laurea viene presentata da una/un relatrice/relatore docente di ruolo del Dipartimento di Informatica o inquadrato nei SSD ING-INF/05 e INF/01. Oltre a coloro che hanno i requisiti indicati rispetto al ruolo di relatrice/relatore (come indicato sopra), possono svolgere il ruolo di correlatrici/correlatori anche ricercatrici/ricercatori operanti in istituti di ricerca extrauniversitari assegnisti di ricerca, titolari di borsa di studio post-dottorato, dottorandi di ricerca, personale tecnico del Dipartimento, cultrici/cultori della materia nominate/i da un Ateneo italiano ed ancora in vigore, referenti aziendali esperte/i nel settore considerato nella Tesi. Può essere nominata/o controrelatrice/controrelatore qualunque docente professoressa/professore o ricercatrice/ricercatore del Dipartimento di Informatica dell'Università degli Studi di Verona, che risulti particolarmente competente nell'ambito specifico di studio della Tesi.

Elenco delle proposte di tesi

Proposte di tesi Area di ricerca
Analisi ed identificazione automatica del tono/volume della voce AI, Robotics & Automatic Control - AI, Robotics & Automatic Control
Analisi e percezione dei segnali biometrici per l'interazione con robot AI, Robotics & Automatic Control - AI, Robotics & Automatic Control
Integrazione del simulatore del robot Nao con Oculus Rift AI, Robotics & Automatic Control - AI, Robotics & Automatic Control
Tesi in ragionamento automatico Computing Methodologies - ARTIFICIAL INTELLIGENCE
Sviluppo sistemi di scansione 3D Computing Methodologies - COMPUTER GRAPHICS
Sviluppo sistemi di scansione 3D Computing Methodologies - IMAGE PROCESSING AND COMPUTER VISION
Dati geografici Information Systems - INFORMATION SYSTEMS APPLICATIONS
Analisi ed identificazione automatica del tono/volume della voce Robotics - Robotics
Analisi e percezione dei segnali biometrici per l'interazione con robot Robotics - Robotics
Integrazione del simulatore del robot Nao con Oculus Rift Robotics - Robotics
Tesi in ragionamento automatico Theory of computation - Logic
Tesi in ragionamento automatico Theory of computation - Semantics and reasoning
Proposte di tesi/collaborazione/stage in Intelligenza Artificiale Applicata Argomenti vari
Proposte di Tesi/Stage/Progetto nell'ambito dell'analisi dei dati Argomenti vari

Modalità e sedi di frequenza

Come riportato nel Regolamento Didattico, la frequenza al corso di studio non è obbligatoria.

È consentita l'iscrizione a tempo parziale. Per saperne di più consulta la pagina Possibilità di iscrizione Part time.

Le attività didattiche del corso di studi si svolgono negli spazi dell’area di Scienze e Ingegneria che è composta dagli edifici di Ca’ Vignal 1, Ca’ Vignal 2, Ca’ Vignal 3 e Piramide, siti nel polo di Borgo Roma. 
Le lezioni frontali si tengono nelle aule di Ca’ Vignal 1, Ca’ Vignal 2, Ca’ Vignal 3 mentre le esercitazioni pratiche nei laboratori didattici dedicati alle varie attività.

Caratteristiche dei laboratori didattici a disposizione degli studenti

  • Laboratorio Alfa
    • 50 PC disposti in 13 file di tavoli
    • 1 PC per docente collegato a un videoproiettore 8K Ultra Alta Definizione per le esercitazioni
    • Configurazione PC: Intel Core i3-7100, 8GB RAM, 250GB SSD, monitor 24", Linux Ubuntu 22.04
    • Tutti i PC sono accessibili da persone in sedia a rotelle
  • Laboratorio Delta
    • 120 PC in 15 file di tavoli
    • 1 PC per docente collegato a due videoproiettori 4K per le esercitazioni
    • Configurazione PC: Intel Core i3-7100, 8GB RAM, 250GB SSD, monitor 24", Linux Ubuntu 22.04
    • Un PC è su un tavolo ad altezza variabile per garantire un accesso semplificato a persone in sedia a rotelle
  • Laboratorio Gamma (Cyberfisico)
    • 19 PC in 3 file di tavoli
    • 1 PC per docente con videoproiettore 4K
    • Configurazione PC: Intel Core i7-13700, 16GB RAM, 512GB SSD, monitor 24", Linux Ubuntu 22.04
  • Laboratorio VirtualLab
    • Accessibile via web: https://virtualab.univr.it
    • Emula i PC dei laboratori Alfa/Delta/Gamma
    • Usabile dalla rete universitaria o tramite VPN dall'esterno
    • Permette agli studenti di lavorare da remoto (es. biblioteca, casa) con le stesse funzionalità dei PC di laboratorio

Caratteristiche comuni:

  • Tutti i PC hanno la stessa suite di programmi usati negli insegnamenti di laboratorio
  • Ogni studente ha uno spazio disco personale di XXX GB, accessibile da qualsiasi PC
  • Gli studenti quindi possono usare qualsiasi PC in qualsiasi laboratorio senza limitazioni ritrovando sempre i documenti salvati precedentemente

Questa organizzazione dei laboratori offre flessibilità e continuità nel lavoro degli studenti, consentendo l'accesso ai propri documenti e all'ambiente di lavoro da qualsiasi postazione o da remoto.


Gestione carriere


Area riservata studenti


Erasmus+ e altre esperienze all’estero


Docenti tutor