Studiare
In questa sezione è possibile reperire le informazioni riguardanti l'organizzazione pratica del corso, lo svolgimento delle attività didattiche, le opportunità formative e i contatti utili durante tutto il percorso di studi, fino al conseguimento del titolo finale.
Piano Didattico
Il piano didattico è l'elenco degli insegnamenti e delle altre attività formative che devono essere sostenute nel corso della propria carriera universitaria.
Selezionare il piano didattico in base all'anno accademico di iscrizione.
1° Anno
Insegnamenti | Crediti | TAF | SSD |
---|
Insegnamenti | Crediti | TAF | SSD |
---|
Insegnamenti | Crediti | TAF | SSD |
---|
1 module between the following
1 module between the following
3 modules among the following
Legenda | Tipo Attività Formativa (TAF)
TAF (Tipologia Attività Formativa) Tutti gli insegnamenti e le attività sono classificate in diversi tipi di attività formativa, indicati da una lettera.
Advanced geometry (2019/2020)
Codice insegnamento
4S003197
Docente
Coordinatore
Crediti
6
Lingua di erogazione
Inglese
Settore Scientifico Disciplinare (SSD)
MAT/03 - GEOMETRIA
Periodo
II semestre dal 2 mar 2020 al 12 giu 2020.
Obiettivi formativi
L'insegnamento si propone di fornire allo studente i concetti fondamentali della teoria dei grafi e le basi della geometria discreta e computazionale. l termine dell'insegnamento lo studente conoscerà alcuni teoremi classici della teoria dei grafi, in particolare riguardo teoremi di struttura, colorazioni, matching theory, immersioni nel piano, problemi di flusso. Inoltre conoscerà i temi fondamentali della geometria discreta e alcuni algoritmi classici della geometria computazionale, e avrà la percezione dei collegamenti con problemi in ambito non prettamente matematico. Sarà in grado di produrre argomentazioni e dimostrazioni rigorose su questi temi e sarà in grado di leggere articoli e testi (anche avanzati) di Teoria dei Grafi e Geometria discreta.
Programma
L'insegnamento prevede lezioni frontali di teoria ed esercitazioni.
A seguire un programma dettagliato del corso:
TEORIA DEI GRAFI:
-Definizioni e proprietà di base
-Matching in grafi bipartiti: Teorema di Konig, Teorema di Hall. Matching in grafi arbitrari: Teorema di Tutte e Teorema di Petersen.
-Connessione: teoremi di Menger.
-Grafi planari: Formula di Eulero e sue conseguenze, Teorema di Kuratowski.
-Colorazioni: Teorema dei Quattro Colori, Teorema dei Cinque Colori, Teorema di Brooks e di Vizing.
GEOMETRIA DISCRETA:
-Convessità, insiemi convessi, separazione, Lemma di Radon e Teorema di Helly.
-Reticoli, Teorema di Minkowski. Teorema di Erdos-Szekeres.
-Intersezione di insiemi convessi, versione frazionaria del teorema di Helly.
-Problema dell'immersione di spazi metrici finiti in spazi normati, Johnson-Lindenstrauss Flattening Lemma
-Superfici discrete e curvature discrete.
GEOMETRIA COMPUTAZIONALE:
-Introduzione generale, reporting vs counting, problema “fixed-radius near neighbourhood” .
-Problema della chiusura convessa: Graham's scan e altri algoritmi.
-Poligonali e problema della Galleria d'Arte. Teorema della Galleria d'Arta, triangolazione di poligoni.
- Diagramma di Voronoi e algoritmo di Fortune.
- Triangolazione di Delaunay e sue proprietà.
Autore | Titolo | Casa editrice | Anno | ISBN | Note |
---|---|---|---|---|---|
Diestel | Graph Theory (Edizione 5) | Springer | 2016 | ||
Matousek | Lectures on Discrete Geometry (Edizione 1) | Springer | 2002 |
Modalità d'esame
Per superare l'esame gli studenti devono dimostrare di:
- conoscere e aver compreso i concetti fondamentali della Teoria dei Grafi
- conoscere e aver compreso i concetti fondamentali della Geometria Discreta e Computazionale
- avere un'adeguata capacità di analisi e sintesi e di astrazione
- sapere applicare queste conoscenze per risolvere problemi ed esercizi, sapendo argomentare i loro ragionamenti con rigore matematico.
- conoscere alcuni possibili sviluppi avanzati della Teoria dei Grafi
Prova scritta (2 ore).
L'esame scritto sulla parte di Teoria dei Grafi, consiste nella risoluzione di 3 o 4 esercizi più due domande di teoria (1 su definizioni/concetti generali e 1 con dimostrazione di un teorema presentato a lezione).
Prova orale (obbligatorio)
Prevede una discussione con il docente sulle definizioni e dimostrazioni discusse durante le lezioni sulla parte di programma di Geometria Discreta e Combinatoria.