Studying at the University of Verona
Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.
Academic calendar
The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.
Course calendar
The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..
Period | From | To |
---|---|---|
I semestre | Oct 1, 2019 | Jan 31, 2020 |
II semestre | Mar 2, 2020 | Jun 12, 2020 |
Session | From | To |
---|---|---|
Sessione invernale d'esame | Feb 3, 2020 | Feb 28, 2020 |
Sessione estiva d'esame | Jun 15, 2020 | Jul 31, 2020 |
Sessione autunnale d'esame | Sep 1, 2020 | Sep 30, 2020 |
Session | From | To |
---|---|---|
Sessione Estiva. | Jul 16, 2020 | Jul 16, 2020 |
Sessione Autunnale. | Oct 15, 2020 | Oct 15, 2020 |
Sessione Invernale. | Mar 18, 2021 | Mar 18, 2021 |
Period | From | To |
---|---|---|
Festa di Ognissanti | Nov 1, 2019 | Nov 1, 2019 |
Festa dell'Immacolata | Dec 8, 2019 | Dec 8, 2019 |
Vacanze di Natale | Dec 23, 2019 | Jan 6, 2020 |
Vacanze di Pasqua | Apr 10, 2020 | Apr 14, 2020 |
Festa della Liberazione | Apr 25, 2020 | Apr 25, 2020 |
Festa del lavoro | May 1, 2020 | May 1, 2020 |
Festa del Santo Patrono | May 21, 2020 | May 21, 2020 |
Festa della Repubblica | Jun 2, 2020 | Jun 2, 2020 |
Vacanze estive | Aug 10, 2020 | Aug 23, 2020 |
Exam calendar
Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.
Should you have any doubts or questions, please check the Enrolment FAQs
Academic staff
Study Plan
The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University. Please select your Study Plan based on your enrolment year.
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
1° Year
Modules | Credits | TAF | SSD |
---|
2° Year
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Legend | Type of training activity (TTA)
TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.
Biomedicine and bioinformatics databases (2019/2020)
Teaching code
4S004549
Credits
12
Also offered in courses
Language
English
Scientific Disciplinary Sector (SSD)
ING-INF/05 - INFORMATION PROCESSING SYSTEMS
The teaching is organized as follows:
Biomedical and bioinformatic data management
Fundamentals of database systems Teoria
Fundamentals of database systems Lab.
Learning outcomes
Knowledge and understanding: The goal of this course is to provide the student with the knowledge and understanding of the theoretical, methodological and technological main concepts related to database systems and their use for the management of biomedical and bioinformatics data and information. Applying knowledge and understanding: The student will be able to a) define through a formal model the structure and the features of complex data collections; b) specify queries on complex data through different query languages; c) understand the advanced requirements for the management of biomedical information. Making judgements: The student will acquire the capability of autonomously evaluate different design options for complex systems, and of autonomously propose effective solutions in the application domain related to biomedicine and bioinformatics. Communication: The student will be also able to interact with different stakeholders in multidisciplinary teams, having different skills and backgrounds in biomedicine and bioinformatics. Lifelong learning skills: The student will acquire the capability of learning new methodologies and technologies related to data management and applying them in the biomedical/bioinformatics domain.
Program
------------------------
MM: Biomedical and bioinformatic data management
------------------------
* Electronic Medical Record systems * Temporal Clinical Databases * Querying biomedical XML data: Xpath and Xquery * Information retrieval techniques: basic issues and application to biomedical data
------------------------
MM: Fundamentals of database systems Teoria
------------------------
- The relational data model: relational calculus, functional dependencies, normal forms and decompositions. - Conceptual data modeling in UML (modelling non relational data) - Object and object-relational databases: data model and query language of SQL 3, UML for modeling object oriented databases, mapping towards SLQ 3. - Spatio-Temporal databases: basic concepts, data models, query languages (TSQL2, Simple Feature Specification for SQL OGC). - Big data systems: Hadoop
------------------------
MM: Fundamentals of database systems Lab.
------------------------
- training on SQL 3 with postgreSQL - training on spatio-temporal queries with PostGIS
Bibliography
Activity | Author | Title | Publishing house | Year | ISBN | Notes |
---|---|---|---|---|---|---|
Fundamentals of database systems Teoria | Paolo Atzeni, Stefano Ceri, Piero Fraternali, Stefano Paraboschi, Riccardo Torlone | Basi di dati (Edizione 5) | McGraw Hill | 2018 | 9788838694455 | |
Fundamentals of database systems Teoria | R. Elmasri, S. B. Navathe | Fundamentals of Database Systems (Edizione 1) | Addison-Wesley | 1994 | 0805317481 | |
Fundamentals of database systems Teoria | M. F. Worboys | GIS: A Computing Perspective (Edizione 1) | Taylor & Francis | 1995 | 0748400656 | |
Fundamentals of database systems Teoria | J. D. Ullman | Principles of Database and Knowledge-base Systems | Computer Science Press | |||
Fundamentals of database systems Teoria | R. Elmasri, S.H. Navathe | Sistemi di Basi di Dati: Fondamenti (Edizione 6) | Pearson | 2011 | 978-88-7192-628-5 | |
Fundamentals of database systems Teoria | P. Rigaux, M. Scholl and A. Voisard | Spatial Databases with Application to GIS | Morgan Kaufmann | |||
Fundamentals of database systems Lab. | Autori Vari | Manuale di Postgresql (https://www.postgresql.org/docs/) | Postgresql |
Examination Methods
------------------------
MM: Biomedical and bioinformatic data management
------------------------
The exam consists of an oral examinations with exercises and questions related to the different parts of the module, with the goal of verifying whether the student is aware of the theoretical content of the module and is able to apply it in real-world contexts.
------------------------
MM: Fundamentals of database systems Teoria
------------------------
The exam for this module consists of a written test of about 2.5 hours containing: (i) some exercises requiring the specification of queries and database design using one of the database models included in the program and (ii) open questions about the theory. During the semester, in a date to be decided with the students, a mid-term test will be proposed on the part of the program regarding: the relational calculus, the functional dependencies and the normalization.
------------------------
MM: Fundamentals of database systems Lab.
------------------------
See the description of the theory module
Type D and Type F activities
years | Modules | TAF | Teacher |
---|---|---|---|
1° 2° | The fashion lab (1 ECTS) | D | Not yet assigned |
years | Modules | TAF | Teacher |
---|---|---|---|
1° 2° | Python programming language | D |
Maurizio Boscaini
(Coordinatore)
|
years | Modules | TAF | Teacher |
---|---|---|---|
1° 2° | CyberPhysical Laboratory | D |
Andrea Calanca
(Coordinatore)
|
1° 2° | C++ Programming Language | D |
Federico Busato
(Coordinatore)
|
1° 2° | Matlab-Simulink programming | D |
Bogdan Mihai Maris
(Coordinatore)
|
years | Modules | TAF | Teacher |
---|---|---|---|
1° 2° | Corso Europrogettazione | D | Not yet assigned |
1° 2° | The course provides an introduction to blockchain technology. It focuses on the technology behind Bitcoin, Ethereum, Tendermint and Hotmoka. | D |
Matteo Cristani
|
Career prospects
Module/Programme news
News for students
There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details.
Further services
I servizi e le attività di orientamento sono pensati per fornire alle future matricole gli strumenti e le informazioni che consentano loro di compiere una scelta consapevole del corso di studi universitario.
Graduation
Attendance
As stated in point 25 of the Teaching Regulations for the A.Y. 2021/2022, attendance at the course of study is not mandatory.Please refer to the Crisis Unit's latest updates for the mode of teaching.