Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.

CURRICULUM TIPO:

2° Year   activated in the A.Y. 2021/2022

ModulesCreditsTAFSSD
6
A
MAT/02
6
B
MAT/03
6
C
SECS-P/01
6
C
SECS-P/01
English language B1 level
6
E
-

3° Year   activated in the A.Y. 2022/2023

ModulesCreditsTAFSSD
6
C
SECS-P/05
Final exam
6
E
-
activated in the A.Y. 2021/2022
ModulesCreditsTAFSSD
6
A
MAT/02
6
B
MAT/03
6
C
SECS-P/01
6
C
SECS-P/01
English language B1 level
6
E
-
activated in the A.Y. 2022/2023
ModulesCreditsTAFSSD
6
C
SECS-P/05
Final exam
6
E
-
Modules Credits TAF SSD
Between the years: 1°- 2°- 3°
Between the years: 1°- 2°- 3°
Other activities
6
F
-

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




S Placements in companies, public or private institutions and professional associations

Teaching code

4S00253

Credits

12

Coordinator

Francesca Mantese

Language

Italian

The teaching is organized as follows:

ALGEBRA LINEARE

Credits

6

Period

I semestre

Academic staff

Francesca Mantese

ELEMENTI DI GEOMETRIA

Credits

6

Period

See the unit page

Academic staff

See the unit page

Learning outcomes

First of all, the students are introduced to the language and formal reasoning required for the study of higher mathematics. Furthermore, the main notions and techniques of linear algebra and matrix theory are presented, focussing both on theoretical and computational aspects. Moreover, the course provides an introduction to planar and spatial analytic geometry, within the projective, affine, and euclidean setting. Finally, the main properties of conics will be discussed. Both analytical (coordinates, matrices) and synthetic tools will be employed.

At the end of the course the student must be able to demonstrate an adequate synthesis and abstraction ability, be able to recognize and produce rigorous demonstrations and be able to formalize and solve problems of moderate difficulty, limited to the syllabus of the teaching.

Program

The entire course will be available online. In addition, a number of the lessons (see the course
schedule) will be held in-class.

------------------------
MM: ALGEBRA LINEARE
------------------------
Groups, fields. The field of complex numbers. Matrices, matrix operations and their properties. Determinant and rank of a matrix. Inverse matrix. Systems of linear equations. The method of Gaussian elimination. Vector spaces, subspaces, bases, dimension. Linear maps.
------------------------
MM: ELEMENTI DI GEOMETRIA
------------------------
Eigenvalues and eigenvectors. Canonical form. Affine and Euclidean spaces. Lines, planes, hyperplanes. Vector product and mixed product. Affine and isometric transformations. Projective spaces. Geometry of projective plane. Conics.

The course consists of front lessons and classroom exercises. Moreover optional tutoring activities are offered. In particular, weekly home exercises are given. They are individually corrected by a tutor and discussed during the exercise hours.

Bibliography

Reference texts
Author Title Publishing house Year ISBN Notes
Abate, M. Algebra Lineare Mc Graw Hill 2001
E.Gregorio, L.Salce Algebra Lineare Libreria Progetto Padova 2005
Candilera,Bertapelle Algebra lineare e primi elementi di Geometria Mc Graw Hill   9788838661891

Examination Methods

The exam aims to verify the ability to solve problems on the teaching program, the possession of an appropriate capacity for analysis, synthesis and abstraction, and the ability to recognize and produce rigorous demonstrations.

The exam consists of:
- a joint written examination on the module Linear Algebra and the module Elements of Geometry,
- a joint oral examination on both modules.

Only students who have passed the written examination will be admitted to the oral examination.
The oral examination can also be supported in a subsequent exam session.
Voting obtained in the written test will remain valid until the February 2022 exam session.

Intermediate Testing: for each module there are two partial tests, on dates that will be communicated to the students after the beginning of the lessons.

Bonus exercises: Each week will be assigned exercises to be done at home preparing for the written test. Your works will be corrected individually by a tutor. A good score in the exercises gives rise to a bonus for the exam.

The assessment methods could change according to the academic rules. The remote mode is however guaranteed for all students who will ask for it in the academic year 2020/21.

Students with disabilities or specific learning disorders (SLD), who intend to request the adaptation of the exam, must follow the instructions given HERE