Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

Academic calendar

The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.

Academic calendar

Course calendar

The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..

Definition of lesson periods
Period From To
I semestre Oct 1, 2019 Jan 31, 2020
II semestre Mar 2, 2020 Jun 12, 2020
Exam sessions
Session From To
Sessione invernale d'esame Feb 3, 2020 Feb 28, 2020
Sessione estiva d'esame Jun 15, 2020 Jul 31, 2020
Sessione autunnale d'esame Sep 1, 2020 Sep 30, 2020
Degree sessions
Session From To
Sessione estiva di laurea Jul 17, 2020 Jul 17, 2020
Sessione autunnale di laurea Oct 13, 2020 Oct 13, 2020
Sessione autunnale di laurea - Dicembre Dec 9, 2020 Dec 9, 2020
Sessione invernale di laurea Mar 10, 2021 Mar 10, 2021
Period From To
Festa di Ognissanti Nov 1, 2019 Nov 1, 2019
Festa dell'Immacolata Dec 8, 2019 Dec 8, 2019
Vacanze di Natale Dec 23, 2019 Jan 6, 2020
Vacanze di Pasqua Apr 10, 2020 Apr 14, 2020
Festa della Liberazione Apr 25, 2020 Apr 25, 2020
Festa del lavoro May 1, 2020 May 1, 2020
Festa del Santo Patrono May 21, 2020 May 21, 2020
Festa della Repubblica Jun 2, 2020 Jun 2, 2020
Vacanze estive Aug 10, 2020 Aug 23, 2020

Exam calendar

Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.

Exam calendar

Should you have any doubts or questions, please check the Enrolment FAQs

Academic staff


Assfalg Michael +39 045 802 7949

Avesani Linda +39 045 802 7839

Ballottari Matteo 045 802 7098

Bassi Roberto 045 802 7916; Lab: 045 802 7915

Bellin Diana 045 802 7090

Bettinelli Marco Giovanni 045 802 7902

Bolzonella David 045 802 7965

Buffelli Mario Rosario +39 0458027268

Capuani Rossana

Cazzaniga Stefano +39 045 8027075

Cecconi Daniela +39 045 802 7056; Lab: +39 045 802 7087

Chignola Roberto 045 802 7953

Chiurco Carlo +390458028159

Cozza Vittoria

Crimi Massimo 045 802 7924; Lab: 045 802 7050

Dall'Osto Luca +39 045 802 7806

Delledonne Massimo 045 802 7962; Lab: 045 802 7058

Dominici Paola 045 802 7966; Lab: 045 802 7956-7086

Fiammengo Roberto 0458027038

Frison Nicola 045 802 7857

Furini Antonella 045 802 7950; Lab: 045 802 7043

Gregorio Enrico 045 802 7937

Guardavaccaro Daniele +39 045 802 7903

Lampis Silvia 045 802 7095

Marino Valerio +39 045 802 7227

Munari Francesca +39 045 802 7906

Pandolfini Tiziana 045 802 7918

Pasetto Luca

Pezzotti Mario +39045 802 7951

Romeo Alessandro +39 045 802 7974-7936; Lab: +39 045 802 7808

Simonato Barbara +39 045 802 7832; Lab. 7960

Speghini Adolfo +39 045 8027900

Tomazzoli Claudio

Torriani Sandra 045 802 7921

Ugel Stefano 045-8126451

Vettori Andrea 045 802 7861/7862

Vitulo Nicola 0458027982

Zaccone Claudio +39 045 8027864

Zapparoli Giacomo +390458027047

Zenoni Sara 045 802 7941

Zipeto Donato +39 045 802 7204

Zivcovich Franco

Zoccatelli Gianni +39 045 802 7952

Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University. Please select your Study Plan based on your enrolment year.

English B1

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.

S Placements in companies, public or private institutions and professional associations

Teaching code





Adolfo Speghini



Scientific Disciplinary Sector (SSD)


The teaching is organized as follows:





II semestre

Academic staff

Adolfo Speghini

laboratorio [2° turno]




II semestre

Academic staff

Adolfo Speghini

laboratorio [1° turno]




II semestre

Academic staff

Adolfo Speghini

Learning outcomes

THEORY: the Course aims to provide the students with the basic tools for understanding and interpreting chemico-physical phenomena concerning systems of biological and biotechnological interest, also through the use of theoretical models. The student will acquire the ability to apply chemical-physical concepts to real processes in order to quantify observables, of thermodynamic, transport, kinetic and spectroscopic type. Some example cases on various physical-chemical aspects will be considered in order to familiarize the student with solution of real problems. LABORATORY: the course also includes some laboratory experiences to provide manual skills and critical skills in dealing with real chemico-physical problems, as well as providing knowledge on modern methods and equipment for the measurement of thermodynamic variables, kinetic constants, colloidal properties as well as for studying electronic and vibrational properties of molecules.



Perfect and real gases. Concepts of heat and work. Heat capacity.
Internal energy, enthalpy and their variations with temperature.
Enthalpy of phase transition. Enthalpy of reaction and its variation with temperature.
Entropy and its variation with temperature. Entropy of phase transition. Overview on the statistical interpretation of entropy. Entropy of reaction.
Gibbs free energy and its variation with pressure and temperature. Stability condition and phase diagrams. Definition of chemical potential. Chemical potential of components of gas mixtures. Entropy and free energy of mixing for gaseous mixtures.
Chemical potential of components od ideal and real solutions. Free energy of mixing for ideal fluids.
Free energy of reaction. Equilibrium and equilibrium constant. Variation of the equilibrium constant with the temperature.

Chemical kinetics.
The rate of reactions. Rate law and order of reaction. Arrhenius equation. Transition state and activation energy. Determination of kinetic laws.
Approach to equilibrium and relaxation. Reaction mechanism. Consecutive reactions. Steady state approximation. Pre-equilibrium. Rate Determining Step. Chemical reactions controlled by diffusion or activation. Kinetic and thermodynamic control of a chemical reaction.

Atomic and molecular energy structure. Molecular spectroscopies.
Introduction to quantum theory. Particles in confined systems. Harmonic oscillator and molecular vibrational modes. Atomic structure. Hydrogen-like atoms. Spin. Pauli exclusion principle.
Valence bond and molecular orbitals. Electronic spectroscopy in the UV and visible regions. Circular dichroism. Decay of the excited states. Radiative and non-radiative transitions. Fluorescence and quenching. Phosphorescence. Vibrational spetroscopy.
Principles of Nuclear Magnetic Resonance spectroscopy (NMR).
Basics on Boltzmann distribution.

Colloidal dispersions and their stability. Examples of colloids of biological importance. Overview of nanostructured systems.
Hydrodynamic diameter and Zeta potential for colloids and their measurements with Dynamic Light Scattering (DLS) technique.


1) Evaluation of the thermal capacity of a calorimeter and neutralization reaction enthalpy through calorimetric measurements;

2) Determination of the kinetic parameters for the reaction of hydrogen peroxide with iodine ion in acidic solution.

3) Study of spectroscopic transitions of fluorescine in the visible region through measurement and analysis of absorption and fluorescence spectra; fluorescence quenching of fluorescein with iodide ion; investigation on the quenching mechanism;

4) FTIR spectrometer and interpretation of infrared spectra of simple molecules. NMR spectrometer and interpretation of NMR spectra of simple molecules. DLS instrumentation for measuring the hydrodynamic diameter and Zeta potential of colloids.


Reference texts
Activity Author Title Publishing house Year ISBN Notes
teoria Peter Atkins, Julio de Paula, James Keeler Chimica Fisica (Edizione 6) Zanichelli 2020 9788808620521
teoria Peter Atkins, Julio de Paula Elementi di Chimica Fisica (Edizione 4) Zanichelli 2018 9788808220684
teoria Thomas Engel Philip Reid Physical Chemistry: Quantum Chemistry and Spectroscopy (Edizione 4) Pearson 2019 9780134804590
teoria Thomas Engel, Philip Reid Physical Chemistry: Thermodynamics, Statistical Thermodynamics, and Kinetics (Edizione 4) Pearson 2019 9780134804583
laboratorio Speghini Adolfo Dispense per esercitazioni di laboratorio di Chimica Fisica (Edizione 1) 2019

Examination Methods

The oral examination will include all the topics of the Course about the theoretical part as well as the examples, exercises and laboratory experiences. Particular attention will be devoted on the Physical Chemistry concepts and the knowledge of the methods, tools and techniques used in laboratory experiences.
For both attending and not attending students the oral examination will cover all the topics discussed in the theoretical part, in the examples and exercises as well as in the laboratory experiences.
Written reports about the the laboratory experiences are required, describing the principles, the used experimental methods and the results obtained during the lab experiences. The reports have to be loaded to the Moodle platform as soon as the lab experiences will be completed.

Type D and Type F activities

I semestre From 10/1/19 To 1/31/20
years Modules TAF Teacher
Python programming language D Maurizio Boscaini (Coordinatore)
Model organism in biotechnology research D Andrea Vettori (Coordinatore)
II semestre From 3/2/20 To 6/12/20
years Modules TAF Teacher
LaTeX Language D Enrico Gregorio (Coordinatore)

Career prospects

Module/Programme news

News for students

There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details.


For schedules, administrative requirements and notices on graduation sessions, please refer to the Graduation Sessions - Science and Engineering service.

List of theses and work experience proposals

theses proposals Research area
Studio delle proprietà di luminescenza di lantanidi in matrici proteiche Synthetic Chemistry and Materials: Materials synthesis, structure-properties relations, functional and advanced materials, molecular architecture, organic chemistry - Colloid chemistry
Multifunctional organic-inorganic hybrid nanomaterials for applications in Biotechnology and Green Chemistry Synthetic Chemistry and Materials: Materials synthesis, structure-properties relations, functional and advanced materials, molecular architecture, organic chemistry - New materials: oxides, alloys, composite, organic-inorganic hybrid, nanoparticles
Stampa 3D di nanocompositi polimerici luminescenti per applicazioni in Nanomedicina Synthetic Chemistry and Materials: Materials synthesis, structure-properties relations, functional and advanced materials, molecular architecture, organic chemistry - New materials: oxides, alloys, composite, organic-inorganic hybrid, nanoparticles
Dinamiche della metilazione del DNA e loro contributo durante il processo di maturazione della bacca di vite. Various topics
Risposte trascrittomiche a sollecitazioni ambientali in vite Various topics
Studio delle basi genomico-funzionali del processo di embriogenesi somatica in vite Various topics


As stated in point 25 of the Teaching Regulations for the A.Y. 2021/2022, attendance is not mandatory. However, professors may require students to attend lectures for a minimum of hours in order to be able to take the module exam, in which case the methods that will be used to check attendance will be explained at the beginning of the module. 
Please refer to the Crisis Unit's latest updates for the mode of teaching.

Career management

Area riservata studenti