Studying at the University of Verona
Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.
Academic calendar
The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.
Course calendar
The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..
Period | From | To |
---|---|---|
I semestre | Oct 1, 2020 | Jan 29, 2021 |
II semestre | Mar 1, 2021 | Jun 11, 2021 |
Session | From | To |
---|---|---|
Sessione invernale d'esame | Feb 1, 2021 | Feb 26, 2021 |
Sessione estiva d'esame | Jun 14, 2021 | Jul 30, 2021 |
Sessione autunnale d'esame | Sep 1, 2021 | Sep 30, 2021 |
Session | From | To |
---|---|---|
Sessione Estiva | Jul 15, 2021 | Jul 15, 2021 |
Sessione Autunnale | Oct 15, 2021 | Oct 15, 2021 |
Sessione Invernale | Mar 15, 2022 | Mar 15, 2022 |
Period | From | To |
---|---|---|
Festa dell'Immacolata | Dec 8, 2020 | Dec 8, 2020 |
Vacanze Natalizie | Dec 24, 2020 | Jan 3, 2021 |
Epifania | Jan 6, 2021 | Jan 6, 2021 |
Vacanze Pasquali | Apr 2, 2021 | Apr 5, 2021 |
Santo Patrono | May 21, 2021 | May 21, 2021 |
Festa della Repubblica | Jun 2, 2021 | Jun 2, 2021 |
Exam calendar
Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.
Academic staff
Study Plan
The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.
1° Year
2° Year activated in the A.Y. 2021/2022
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Legend | Type of training activity (TTA)
TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.
Foundations of Artificial Intelligence (2020/2021)
Teaching code
4S008898
Credits
6
Language
Italian
Scientific Disciplinary Sector (SSD)
ING-INF/05 - INFORMATION PROCESSING SYSTEMS
The teaching is organized as follows:
Teoria
Laboratorio
Learning outcomes
The class presents the main techniques for problem solving, based on the central paradigm of symbolic and probabilistic representations. The objective is to provide the students with the ability to design, apply and evaluate algorithms for difficult problems, meaning that their mechanical solution captures aspects of artificial intelligence or computational rationality. At the end of the course the students must demonstrate to know and understand the main techniques for state space search, to understand the fundamental concepts related to constrained networks and to know the basic concepts related to probabilistic reasoning and reinforcement learning. This will allow the students to choose the most appropriate solution techniques for different problems and to continue independently the studies in Artificial Intelligence, deepening the topics covered in class, both on other texts and on scientific publications.
Program
Problem solving as search in a state space; un-informed search procedures; heuristic search procedures.
Problem solving based on constraint processing (satisfaction and optimization); Solution techniques based on search (Backtracking, Branch and Bound) and inference (Join Tree Clustering, Bucket Elimination);
Probabilistic reasoning: i) Representing uncertainty by using probability theory; ii) Markov decision processes (definitions and main solution techniques); iii) reinforcement learning (basic concepts and solution techniques, Deep Reinforcement Learning).
Implementing (through assisted software development) the main solution techniques presented during the course related to state space search and probabilistic reasoning.
Examination Methods
The final grade for the AI module will be achieved with a single oral test.
The oral exam can follow two modalities: i) oral test on topics studied during the course (including the programming lab.); ii) oral test on a specific project assigned by the teacher (and on the programming lab).
For what concerns the oral test on topics studied during the course, the teacher asks the students to carry out some exercises and asks questions to evaluate the level of comprehension of the topics covered during the course.
For what concerns the oral test on the project, the teacher and the student agree on a topic for the project which will include a substantial programming part. The student will carry out the project and during the oral test she/he will explain the project to the teacher that will ask questions to evaluate the level of comprehension of the topic.
The topic for the project and the exact date and time for the oral test of each student are agreed with the teacher at the end of the course.
For what concerns the progamming lab, during the course duration the students will implement some of the algorithms studied in class. The laboratory part is evaluated during the oral test. For this evaluation, the students will deliver the software they developed to the teacher and the teacher will ask questions to assess the level of understanding of the delivered software.
Type D and Type F activities
Le attività formative in ambito D o F comprendono gli insegnamenti impartiti presso l'Università di Verona o periodi di stage/tirocinio professionale.
Nella scelta delle attività di tipo D, gli studenti dovranno tener presente che in sede di approvazione si terrà conto della coerenza delle loro scelte con il progetto formativo del loro piano di studio e dell'adeguatezza delle motivazioni eventualmente fornite.
years | Modules | TAF | Teacher |
---|---|---|---|
1° 2° | Matlab-Simulink programming | D |
Bogdan Mihai Maris
(Coordinator)
|
1° 2° | Programming Challanges | D |
Romeo Rizzi
(Coordinator)
|
years | Modules | TAF | Teacher |
---|---|---|---|
1° 2° | Introduction to 3D printing | D |
Franco Fummi
(Coordinator)
|
1° 2° | Python programming language | D |
Vittoria Cozza
(Coordinator)
|
1° 2° | HW components design on FPGA | D |
Franco Fummi
(Coordinator)
|
1° 2° | Rapid prototyping on Arduino | D |
Franco Fummi
(Coordinator)
|
1° 2° | Protection of intangible assets (SW and invention)between industrial law and copyright | D |
Roberto Giacobazzi
(Coordinator)
|
years | Modules | TAF | Teacher |
---|---|---|---|
1° 2° | The fashion lab (1 ECTS) | D |
Maria Caterina Baruffi
(Coordinator)
|
1° 2° | The course provides an introduction to blockchain technology. It focuses on the technology behind Bitcoin, Ethereum, Tendermint and Hotmoka. | D |
Nicola Fausto Spoto
(Coordinator)
|
Career prospects
Module/Programme news
News for students
There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details: only in this way will you be able to receive notification of all the notices from your teachers and your secretariat via email and also via the Univr app.
Graduation
Deadlines and administrative fulfilments
For deadlines, administrative fulfilments and notices on graduation sessions, please refer to the Graduation Sessions - Science and Engineering service.
Need to activate a thesis internship
For thesis-related internships, it is not always necessary to activate an internship through the Internship Office. For further information, please consult the dedicated document, which can be found in the 'Documents' section of the Internships and work orientation - Science e Engineering service.
Final examination regulations
List of thesis proposals
Attendance modes and venues
As stated in the Teaching Regulations, attendance at the course of study is not mandatory.
Part-time enrolment is permitted. Find out more on the Part-time enrolment possibilities page.
The course's teaching activities take place in the Science and Engineering area, which consists of the buildings of Ca‘ Vignal 1, Ca’ Vignal 2, Ca' Vignal 3 and Piramide, located in the Borgo Roma campus.
Lectures are held in the classrooms of Ca‘ Vignal 1, Ca’ Vignal 2 and Ca' Vignal 3, while practical exercises take place in the teaching laboratories dedicated to the various activities.