Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

A.A. 2020/2021

Academic calendar

The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.

Academic calendar

Course calendar

The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..

Definition of lesson periods
Period From To
I semestre Oct 1, 2020 Jan 29, 2021
II semestre Mar 1, 2021 Jun 11, 2021
Exam sessions
Session From To
Sessione invernale d'esame Feb 1, 2021 Feb 26, 2021
Sessione estiva d'esame Jun 14, 2021 Jul 30, 2021
Sessione autunnale d'esame Sep 1, 2021 Sep 30, 2021
Degree sessions
Session From To
Sessione estiva di laurea Jul 14, 2021 Jul 14, 2021
Sessione autunnale di laurea Oct 13, 2021 Oct 13, 2021
Sessione invernale di laurea Mar 11, 2022 Mar 11, 2022
Holidays
Period From To
Festa dell'Immacolata Dec 8, 2020 Dec 8, 2020
Vacanze Natalizie Dec 24, 2020 Jan 3, 2021
Epifania Jan 6, 2021 Jan 6, 2021
Vacanze Pasquali Apr 2, 2021 Apr 5, 2021
Festa del Santo Patrono May 21, 2021 May 21, 2021
Festa della Repubblica Jun 2, 2021 Jun 2, 2021
Vacanze estive Aug 9, 2021 Aug 15, 2021

Exam calendar

Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.

Exam calendar

Should you have any doubts or questions, please check the Enrolment FAQs

Academic staff

A B C D F G K L M R S T V

Assfalg Michael

michael.assfalg@univr.it +39 045 802 7949

Astegno Alessandra

alessandra.astegno@univr.it 045802 7955

Avesani Linda

linda.avesani@univr.it +39 045 802 7839

Benati Marco

marco.benati@univr.it +39 045 812 4418 - 6698

Benini Anna

anna.benini@univr.it 045 8027603

Bossi Alessandra Maria

alessandramaria.bossi@univr.it 045 802 7946 (Studio) - 045 802 7833 (Laboratorio)

Cecconi Daniela

daniela.cecconi@univr.it +39 045 802 7056; Lab: +39 045 802 7087

Constantin Gabriela

gabriela.constantin@univr.it 045-8027102

Corbo Vincenzo

vincenzo.corbo@univr.it + 39 0458124830

Decimo Ilaria

Ilaria.decimo@univr.it 045 8027509

Delledonne Massimo

massimo.delledonne@univr.it 045 802 7962; Lab: 045 802 7058

Dominici Paola

paola.dominici@univr.it 045 802 7966; Lab: 045 802 7956-7086

Fabene Paolo

paolo.fabene@univr.it 0458027267

Favretto Filippo

filippo.favretto@univr.it 045 802 7956-7865

Giorgetti Alejandro

alejandro.giorgetti@univr.it 045 802 7982

Gottardo Rossella

rossella.gottardo@univr.it 045 8124247

Guardavaccaro Daniele

daniele.guardavaccaro@univr.it +39 045 802 7903

Krampera Mauro

mauro.krampera@univr.it 0458124034

Laudanna Carlo

carlo.laudanna@univr.it 045-8027689

Liptak Zsuzsanna

zsuzsanna.liptak@univr.it +39 045 802 7032

Lleo'Fernandez Maria Del Mar

maria.lleo@univr.it 045 8027194

Malerba Giovanni

giovanni.malerba@univr.it 045/8027685

Mazzariol Annarita

annarita.mazzariol@univr.it 045 8027690

Montagnana Martina

martina.montagnana@univr.it +39 045 812 6698

Rossato Marzia

marzia.rossato@univr.it +39 045 802 7800

Signoretto Caterina

caterina.signoretto@univr.it 045 802 7195

Tagliaro Franco

franco.tagliaro@univr.it 045 8124618-045 8124246

Turco Alberto

alberto.turco@univr.it 0458027189

Turrina Stefania

stefania.turrina@univr.it 045/8027622

Vettori Andrea

andrea.vettori@univr.it 045 802 7861/7862

Vitulo Nicola

nicola.vitulo@univr.it 0458027982

Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University. Please select your Study Plan based on your enrolment year.

ModulesCreditsTAFSSD
One course to be chosen among the following
One course to be chosen among the following
Two courses to be chosen among the following
ModulesCreditsTAFSSD
Training
2
F
-
Final exam
40
E
-

1° Year

ModulesCreditsTAFSSD
One course to be chosen among the following
One course to be chosen among the following
Two courses to be chosen among the following

2° Year

ModulesCreditsTAFSSD
Training
2
F
-
Final exam
40
E
-
Modules Credits TAF SSD
Between the years: 1°- 2°Two courses to be chosen among the following ("Biotechnology in Neuroscience" and "Clinical proteomics" 1st and 2nd year; the other courses 2nd year only)
6
C
(MED/04)

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




SPlacements in companies, public or private institutions and professional associations

Teaching code

4S003680

Coordinatore

Carlo Laudanna

Credits

6

Scientific Disciplinary Sector (SSD)

MED/04 - EXPERIMENTAL MEDICINE AND PATHOPHYSIOLOGY

Language

English en

Period

II semestre dal Mar 1, 2021 al Jun 11, 2021.

Learning outcomes

The class will provide the students with an overview of different aspects of Systems Biology applied to life and medical science. The class will be initially focused on general aspects of Systems Biology, including the concepts of complexity, emergent properties, abstraction, mathematical modeling and biological networks. the course will provide a number of examples regarding general principles and methods typical of systems biology, data-bases and software widely used in the field. Furthermore, in the course we will introduce as propaedeutic background, some examples of complex systems in biology, including signal transduction and metabolic networks. In the second part of the course we will proceed with the description of complex systems relevant to medicine, such as the immune systems, autoimmune diseases and cancer in the context of systems biology. Several examples will be explained and extensively illustrated. Moreover, a general view of systems biology in the context of a transition toward personalized medicine will be proposed. In the context of the degree, the class will provide the necessary bases to understand the interdisciplinary nature of biomedicine and bioinformatics.

Program

General concepts - foundations:

1) Complexity: definition, origin and nature of complexity in biology
2) The “emergent properties” of biological systems: the cellular and molecular circuits
3) Science based on thesis and the deductive method; science based on experimental data the inductive method
4) Systems Biology: definition and experimental connotation of Systems Biology
5) Why Systems Biology? The reductionist approach versus the holistic approach
6) The concept of model: predict the future in biology?
7) Static models: the network abstraction and the topological properties of biological networks
8) Dynamic models and biological kinetics

Methods in Systems Biology:

9) High-performance technologies (high throughput methods)
10) Bioinformatics
11) Biological database
12) Software for systems biology
13) Contexts of Systems Biology: transcriptomics, proteomics, metabolomics, etc.

Systems Biology in practice - applications of Systems Biology to biomedical contexts:

14) Networks and diseases
15) The immune system
16) Inflammatory mechanisms
17) Cancer
18) Neurodegenerative diseases
19) Autoimmune diseases
20) Systems pharmacology and drug discovery

Teaching methods consist of frontal lessons devoted to the transmission of basic and applied notions, as well as in computer exercises with tasks that will be assigned to students in order to apply the notions learned during lessons. The exercises will be performed at the Center for Computational Biomedicine (CBMC) of the University.

Bibliografia

Reference texts
Author Title Publishing house Year ISBN Notes
Masao Nagasaki • Ayumu Saito • Atsushi Doi Hiroshi Matsuno • Satoru Miyano Foundations of Systems Biology Springer 2007 978-1-84882-022-7

Examination Methods

Written with multiple answer questions. Score will be in thirty, 18 to 30. The exam will test theoretic land applied skills useful to the study of physio-pathplogical processes, also in the context of specific examples of human pathologies.

Type D and Type F activities

II semestre From 3/1/21 To 6/11/21
years Modules TAF Teacher
1° 2° Python programming language D Vittoria Cozza (Coordinatore)

Career prospects


Module/Programme news

News for students

There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details.

Gestione carriere


Attendance

As stated in point 25 of the Teaching Regulations for the A.Y. 2021/2022, attendance is not mandatory. However, professors may require students to attend lectures for a minimum of hours in order to be able to take the module exam, in which case the methods that will be used to check attendance will be explained at the beginning of the module. 
Please refer to the Crisis Unit's latest updates for the mode of teaching.

Graduation

List of theses and work experience proposals

theses proposals Research area
Studio delle proprietà di luminescenza di lantanidi in matrici proteiche Synthetic Chemistry and Materials: Materials synthesis, structure-properties relations, functional and advanced materials, molecular architecture, organic chemistry - Colloid chemistry
Stampa 3D di nanocompositi polimerici luminescenti per applicazioni in Nanomedicina Synthetic Chemistry and Materials: Materials synthesis, structure-properties relations, functional and advanced materials, molecular architecture, organic chemistry - New materials: oxides, alloys, composite, organic-inorganic hybrid, nanoparticles
3D-bioprinting biofabrication laboratory Various topics
Organ on-a-chip Various topics

Further services

I servizi e le attività di orientamento sono pensati per fornire alle future matricole gli strumenti e le informazioni che consentano loro di compiere una scelta consapevole del corso di studi universitario.