Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

A.A. 2020/2021

Academic calendar

The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.

Academic calendar

Course calendar

The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..

Definition of lesson periods
Period From To
I semestre Oct 1, 2020 Jan 29, 2021
II semestre Mar 1, 2021 Jun 11, 2021
Exam sessions
Session From To
Sessione invernale d'esame Feb 1, 2021 Feb 26, 2021
Sessione estiva d'esame Jun 14, 2021 Jul 30, 2021
Sessione autunnale d'esame Sep 1, 2021 Sep 30, 2021
Degree sessions
Session From To
Sessione Estiva Jul 15, 2021 Jul 15, 2021
Sessione Autunnale Oct 15, 2021 Oct 15, 2021
Sessione Invernale Mar 15, 2022 Mar 15, 2022
Holidays
Period From To
Festa dell'Immacolata Dec 8, 2020 Dec 8, 2020
Vacanze Natalizie Dec 24, 2020 Jan 3, 2021
Epifania Jan 6, 2021 Jan 6, 2021
Vacanze Pasquali Apr 2, 2021 Apr 5, 2021
Festa del Santo Patrono May 21, 2021 May 21, 2021

Exam calendar

Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.

Exam calendar

Should you have any doubts or questions, please check the Enrolment FAQs

Academic staff

A B C D F G L M P S

Accordini Simone

simone.accordini@univr.it +39 045 8027657

Baruffi Maria Caterina

mariacaterina.baruffi@univr.it

Bicego Manuele

manuele.bicego@univr.it +39 045 802 7072

Bombieri Cristina

cristina.bombieri@univr.it 045-8027209

Bombieri Nicola

nicola.bombieri@univr.it +39 045 802 7094

Cicalese Ferdinando

ferdinando.cicalese@univr.it +39 045 802 7969

Combi Carlo

carlo.combi@univr.it 045 802 7985

Constantin Gabriela

gabriela.constantin@univr.it 045-8027102

Daducci Alessandro

alessandro.daducci@univr.it +39 045 8027025

Delledonne Massimo

massimo.delledonne@univr.it 045 802 7962; Lab: 045 802 7058

Franco Giuditta

giuditta.franco@univr.it +39 045 802 7045

Fummi Franco

franco.fummi@univr.it 045 802 7994

Giacobazzi Roberto

roberto.giacobazzi@univr.it +39 045 802 7995

Giugno Rosalba

rosalba.giugno@univr.it 0458027066

Laudanna Carlo

carlo.laudanna@univr.it 045-8027689

Liptak Zsuzsanna

zsuzsanna.liptak@univr.it +39 045 802 7032

Malerba Giovanni

giovanni.malerba@univr.it 045/8027685

Marcon Alessandro

alessandro.marcon@univr.it +39 045 802 7668

Maris Bogdan Mihai

bogdan.maris@univr.it +39 045 802 7074

Perduca Massimiliano

massimiliano.perduca@univr.it +39 045 802 7984

Sala Pietro

pietro.sala@univr.it 0458027850

Salvagno Gian Luca

gianluca.salvagno@univr.it 045 8124308-0456449264

Spoto Nicola Fausto

fausto.spoto@univr.it +39 045 8027940

Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University. Please select your Study Plan based on your enrolment year.

ModulesCreditsTAFSSD
Final exam
24
E
-

2° Year

ModulesCreditsTAFSSD
Final exam
24
E
-
Modules Credits TAF SSD
Between the years: 1°- 2°
English b2 level
4
F
-
Between the years: 1°- 2°
Other activities
2
F
-
Between the years: 1°- 2°

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




SPlacements in companies, public or private institutions and professional associations

Teaching code

4S004550

Credits

12

Coordinatore

Zsuzsanna Liptak

Scientific Disciplinary Sector (SSD)

INF/01 - INFORMATICS

Language

English

The teaching is organized as follows:

Algorithm design

Credits

6

Period

I semestre

Bioinformatics algorithms

Credits

6

Period

II semestre

Academic staff

Zsuzsanna Liptak

Learning outcomes

Students will acquire a wealth of advanced analytic tools which constitute the foundational basis of the algorithmic solution of important problems in bioinformatics Knowledge and understanding The aim of the course is to provide the student with the necessary skills and know-how for the design and analysis of algorithmic solutions to fundamental bioinformatics problems. Applying knowledge and understanding The students will acquire the ability to design algorithmic solutions for typical problems in bioinformatics and computational biology, e.g., analysis of “omics”-data. Making judgements The students will be able to identify the critical structural elements of a problem and the most appropriate approaches to tackle complex problems in bioinformatics. Communication The students will acquire the ability to describe with appropriate precision and clarity, to both experts and non-specialists: a bioinformatics problem, its mathematical model and the corresponding solution. Lifelong learning skills The students will be able to deepen their know-how in bioinformatics autonomously. Based on the topics studied and the knowledge acquired, they will be able to read, understand, and apply material from advanced text-books and scientific article.

Program

------------------------
MM: Algorithm design
------------------------
1. Fundamental notions of algorithmic analysis and complexity: Brief recap on graph traversals; shortest path problem; minimum spanning tree algorithms; elements of computational complexity and NP-completeness 2. Models for Genome Rearrangement: (i) approximation algorithms for reversal distance model (sorting unsigned permutations); (ii) the Doble Cut and Join model; (iii) Synteny Distance approximation algorithms 3. Models for DNA assembly: (i) The Shortest Common Superstring problem (SCS), connections to maximum cost TSP, approximation of the maximum compression via weighted matching; (ii) Assembly based on Eulerian Cycles and de Bruijn graphs; efficient algorithms for the Eulerian path and Eulerian cycle problem. 4. Distance measures for biological sequences: (i) edit distance, (ii) LCS-distance, (iii) q-gram distance, (iv) possibly further distances. 5. Introduction to data structures for genomic sequences: (i) Basics of Suffix trees and Suffix arrays; (ii) some applications.
------------------------
MM: Bioinformatics algorithms
------------------------
1. Pairwise Sequence Comparison (i) Pairwise sequence alignment (global, local) (ii) variants: optimal alignment in linear space, semiglobal, affine gap penalties, (iii) similarity vs. distance (iv) Pairwise alignment in practice: dotplots, BLAST, Scoring matrices 2. Multiple sequence alignment: (i) exact DP algorithm, (ii) Carillo-Lipman search space reduction, (iii) approximation algorithms, heuristics 3. RNA secondary structure prediction 4. Phylogenetic reconstruction: (i) distance based data: ultrametric trees and UPGMA, (ii) distance based data: additive trees and Neighbor Joining (iii) character based data: Perfect phylogeny (PP); (iv) character based data: Small Parsimony, Fitch' algorithm (v) heuristics for Large Parsimony.

Examination Methods

------------------------
MM: Algorithm design
------------------------
The exam checks the capacity of the student to master the fundamental tools and techniques for the analysis and design of algorithms and that they understand how these techniques are employed in the solution of some classical computational problems arising in bioinformatics. To pass the exam, it is necessary to take a written test, consisting of open questions and/or multiple choice questions. The exercises are meant to evaluate the student's knowledge of classical algorithms and analysis tools as seen during the course, as well as their ability to model "new" toy problems and design and analyse algorithmic solutions for it. A student who reaches a grade of over 25 in the written test has to take an additional oral exam. The overall grade for "Fundamental Algorithms for Bioinformatics" is the average of the grades for the two modules.
------------------------
MM: Bioinformatics algorithms
------------------------
To pass the exam, it is necessary to take a written test. A student who reaches a grade of over 25 in the written test has to take an additional oral exam. The written exam consists of theoretical questions (problems studied, analysis of algorithms studied, mathematical properties, which algorithms exist for a problem etc.), as well as applications of algorithms to concrete examples (computing a pairwise alignment with the DP algorithm etc.) In the oral exam, the student will explain in detail their solutions to the written exam, and show to what extent they have mastered the topics. Students of the Masters in Molecular and medical biotechnology will have separate questions. (The exam is the same for students who follow the course during the semester and those who do not: frequentanti e no.)

Bibliografia

Reference texts
Activity Author Title Publishing house Year ISBN Notes
Algorithm design H.J. Böckenhauer, D. Bongartz Algorithmic Aspects of Bioinformatics Springer 2007
Algorithm design Enno Ohlebusch Bioinformatics Algorithms 2013 978-3-00-041316-2
Algorithm design Stein, Drysdale, Bogart Discrete Mathematics for Computer Scientists Pearson 2011 978-0-13-137710-3
Algorithm design V. Mäkinen, D. Belazzougui, F. Cunial, and A.I. Tomescu Genome Scale Algorithm Design (Edizione 1) Cambridge University Press 2015 ISBN 978-1-107-07853-6
Algorithm design J.C. Setubal, J. Meidanis Introduction to Computational Biology Pws Pub Co 1997
Bioinformatics algorithms H.J. Böckenhauer, D. Bongartz Algorithmic Aspects of Bioinformatics Springer 2007
Bioinformatics algorithms Enno Ohlebusch Bioinformatics Algorithms 2013 978-3-00-041316-2
Bioinformatics algorithms V. Mäkinen, D. Belazzougui, F. Cunial, and A.I. Tomescu Genome Scale Algorithm Design (Edizione 1) Cambridge University Press 2015 ISBN 978-1-107-07853-6
Bioinformatics algorithms Joao Setubal and Joao Meidanis Introduction to Computational Biology 1997

Type D and Type F activities

I semestre From 10/1/20 To 1/29/21
years Modules TAF Teacher
1° 2° Matlab-Simulink programming D Bogdan Mihai Maris (Coordinatore)
II semestre From 3/1/21 To 6/11/21
years Modules TAF Teacher
1° 2° Introduction to 3D printing D Franco Fummi (Coordinatore)
1° 2° Python programming language D Vittoria Cozza (Coordinatore)
1° 2° HW components design on FPGA D Franco Fummi (Coordinatore)
1° 2° Rapid prototyping on Arduino D Franco Fummi (Coordinatore)
1° 2° Protection of intangible assets (SW and invention)between industrial law and copyright D Roberto Giacobazzi (Coordinatore)
List of courses with unassigned period
years Modules TAF Teacher
1° 2° The fashion lab (1 ECTS) D Maria Caterina Baruffi (Coordinatore)
1° 2° The course provides an introduction to blockchain technology. It focuses on the technology behind Bitcoin, Ethereum, Tendermint and Hotmoka. D Nicola Fausto Spoto (Coordinatore)

Career prospects


Module/Programme news

News for students

There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details.

Graduation


Attendance

As stated in point 25 of the Teaching Regulations for the A.Y. 2021/2022, attendance at the course of study is not mandatory.
Please refer to the Crisis Unit's latest updates for the mode of teaching.

Gestione carriere


Further services

I servizi e le attività di orientamento sono pensati per fornire alle future matricole gli strumenti e le informazioni che consentano loro di compiere una scelta consapevole del corso di studi universitario.