Studying at the University of Verona
Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.
Academic calendar
The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.
Course calendar
The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..
Period | From | To |
---|---|---|
I semestre | Oct 1, 2020 | Jan 29, 2021 |
II semestre | Mar 1, 2021 | Jun 11, 2021 |
Session | From | To |
---|---|---|
Sessione invernale d'esame | Feb 1, 2021 | Feb 26, 2021 |
Sessione estiva d'esame | Jun 14, 2021 | Jul 30, 2021 |
Sessione autunnale d'esame | Sep 1, 2021 | Sep 30, 2021 |
Session | From | To |
---|---|---|
Sessione Estiva | Jul 15, 2021 | Jul 15, 2021 |
Sessione Autunnale | Oct 15, 2021 | Oct 15, 2021 |
Sessione Invernale | Mar 15, 2022 | Mar 15, 2022 |
Period | From | To |
---|---|---|
Festa dell'Immacolata | Dec 8, 2020 | Dec 8, 2020 |
Vacanze Natalizie | Dec 24, 2020 | Jan 3, 2021 |
Epifania | Jan 6, 2021 | Jan 6, 2021 |
Vacanze Pasquali | Apr 2, 2021 | Apr 5, 2021 |
Festa del Santo Patrono | May 21, 2021 | May 21, 2021 |
Exam calendar
Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.
Should you have any doubts or questions, please check the Enrolment FAQs
Academic staff
Study Plan
The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University. Please select your Study Plan based on your enrolment year.
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
1° Year
Modules | Credits | TAF | SSD |
---|
2° Year
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Legend | Type of training activity (TTA)
TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.
Epidemiological methods and clinical epidemiology (2020/2021)
Teaching code
4S004562
Academic staff
Coordinatore
Credits
6
Language
English
Scientific Disciplinary Sector (SSD)
MED/01 - MEDICAL STATISTICS
Period
I semestre dal Oct 1, 2020 al Jan 29, 2021.
Learning outcomes
The course aims at providing the students with the theoretical and practical tools needed to evaluate the frequency of diseases in human populations and the associated risk factors, i.e. expertise in epidemiology, biostatistics and information technology applied to the analysis of biomedical data. Knowledge and understanding: Knowledge and skills concerning the main designs of epidemiological studies, the statistical methods for the analysis of biomedical data and the programming syntax of a statistical software (STATA). Applied knowledge and understanding: a) To know the statistical techniques used for the analysis of biomedical data; b) to perform data analysis using a statistical software (STATA); c) to interpret the results obtained. Making judgements: Ability to choose the appropriate statistical methods in relation to the type of data and the design of the study. Communication skills: Ability to communicate the results of an analysis of biomedical data clearly and concisely. Lifelong learning skills: Ability to apply autonomously the statistical and epidemiological methodologies learned during the course on various biomedical problems.
Program
The course is structured in theoretical lessons (32h) and in practical lessons (24h) on the use of a statistical software (STATA) for the quantitative analysis of biomedical data, which are provided in dual mode (face to face and remote).
The teaching material is made available to the students on the e-learning web page of the course (Moodle platform).
1. Introduction to epidemiology
- Definition and key features
- Traditional classification of epidemiology
- John Snow and cholera outbreaks in London
2. Measures of occurrence
- Outcomes
- Prevalence
- Cumulative incidence
- Incidence rate
3. Measures of association and public health impact
- Determinants
- Epidemiological associations
- Attributable risk (AR) and AR%
- Relative risk (RR) and Odds ratio (OR)
- Effect modification
4. Types of epidemiological studies
- Ecological studies
- Cross-sectional studies
- Cohort studies
- Case-control studies
- Experimental studies
5. Causal interpretation of an empirical association
- Statistical vs. causal associations
- Causal models in epidemiology
- Validity of a study (random error, bias, confounding)
- Types of bias
- Methods to control confounding
- Hill’s positive criteria for causality
6. Health prevention, screening and diagnostic tests
- Primary, secondary, tertiary prevention
- Validity and performance of a diagnostic test
7. Principles of inference
- Principles of sampling
- Point estimate and sampling distribution
- Confidence interval
- Hypothesis test
- Test of significance
8. Stratified analysis
- Effect modification vs. confounding
- Stratum-specific estimates
- Testing homogeneity
- Pooled estimate
- Testing the stratified null hypothesis of no association
9. Basic statistical models in epidemiological research
- Linear regression model
- Logistic regression model
10. Statistical methods for survival analysis
- Kaplan-Meier non-parametric estimator
- Cox regression model
Author | Title | Publishing house | Year | ISBN | Notes |
---|---|---|---|---|---|
Marubini E, Valsecchi MG | Analysing Survival Data from Clinical Trials and Observational Studies | John Wiley & sons | 1995 | ||
Pearce N | A short Introduction to Epidemiology (Edizione 2) | 2005 | https://vula.uct.ac.za/access/content/group/9c29ba04-b1ee-49b9-8c85-9a468b556ce2/DOH/Module%202%20(Bio_Epi)/Epidemiology/EPIDEMIOLOGY/Pearce.pdf | ||
Hennekens CH, Buring JE | Epidemiology in Medicine | Lippincott Williams & Wilkins | 1987 | ||
McCullagh P, Nelder JA | Generalized Linear Models (Edizione 2) | Chapman and Hall/CRC | 1989 | ||
Rothman KJ, Greenland S, Lash TL | Modern Epidemiology (Edizione 3) | Lippincott Williams & Wilkins | 2008 | ||
Glantz SA | Statistica per Discipline Biomediche (Edizione 6) | McGraw-Hill | 2007 | 9788838639258 |
Examination Methods
The final test is a written exam in presence (computer lab). The test is the same for attending and non-attending students.
The remote exam is however guaranteed for all students who request it in the academic year 2020/21.
The aim of the test is to verify the knowledge of all the topics discussed and the ability to solve a biomedical problem by analyzing health data using the statistical software STATA.
The commands, results and interpretation of the analysis are reported in written form. In addition, students have to answer some questions to ascertain the understanding of theory.
The final evaluation is expressed in thirtieths.
Type D and Type F activities
years | Modules | TAF | Teacher |
---|---|---|---|
1° 2° | Matlab-Simulink programming | D |
Bogdan Mihai Maris
(Coordinatore)
|
years | Modules | TAF | Teacher |
---|---|---|---|
1° 2° | Introduction to 3D printing | D |
Franco Fummi
(Coordinatore)
|
1° 2° | Python programming language | D |
Vittoria Cozza
(Coordinatore)
|
1° 2° | HW components design on FPGA | D |
Franco Fummi
(Coordinatore)
|
1° 2° | Rapid prototyping on Arduino | D |
Franco Fummi
(Coordinatore)
|
1° 2° | Protection of intangible assets (SW and invention)between industrial law and copyright | D |
Roberto Giacobazzi
(Coordinatore)
|
years | Modules | TAF | Teacher |
---|---|---|---|
1° 2° | The fashion lab (1 ECTS) | D |
Maria Caterina Baruffi
(Coordinatore)
|
1° 2° | The course provides an introduction to blockchain technology. It focuses on the technology behind Bitcoin, Ethereum, Tendermint and Hotmoka. | D |
Nicola Fausto Spoto
(Coordinatore)
|
Career prospects
Module/Programme news
News for students
There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details.
Further services
I servizi e le attività di orientamento sono pensati per fornire alle future matricole gli strumenti e le informazioni che consentano loro di compiere una scelta consapevole del corso di studi universitario.
Graduation
Attendance
As stated in point 25 of the Teaching Regulations for the A.Y. 2021/2022, attendance at the course of study is not mandatory.Please refer to the Crisis Unit's latest updates for the mode of teaching.