Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

A.A. 2021/2022

Academic calendar

The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.

Academic calendar

Course calendar

The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..

Definition of lesson periods
Period From To
Primo semestre Oct 4, 2021 Jan 28, 2022
Secondo semestre Mar 7, 2022 Jun 10, 2022
Exam sessions
Session From To
Sessione invernale d'esame Jan 31, 2022 Mar 4, 2022
Sessione estiva d'esame Jun 13, 2022 Jul 29, 2022
Sessione autunnale d'esame Sep 1, 2022 Sep 29, 2022
Degree sessions
Session From To
Sessione estiva di laurea Jul 21, 2022 Jul 21, 2022
Sessione autunnale di laurea Oct 13, 2022 Oct 13, 2022
Sessione autunnale di laurea - dicembre Dec 7, 2022 Dec 7, 2022
Sessione invernale Mar 16, 2023 Mar 16, 2023
Period From To
Festa di Tutti i Santi Nov 1, 2021 Nov 1, 2021
Festa dell'Immacolata Concezione Dec 8, 2021 Dec 8, 2021
Festività natalizie Dec 24, 2021 Jan 2, 2022
VACANZE DI PASQUA Apr 15, 2022 Apr 19, 2022
FESTA DEL LAVORO May 1, 2022 May 1, 2022
Festa di San Zeno - S. Patrono di Verona May 21, 2022 May 21, 2022
Festa della Repubblica Jun 2, 2022 Jun 2, 2022
Chiusura estiva Aug 15, 2022 Aug 20, 2022

Exam calendar

Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.

Exam calendar

Should you have any doubts or questions, please check the Enrolment FAQs

Academic staff


Albi Giacomo +39 045 802 7913

Angeleri Lidia 045 802 7911

Baldo Sisto 045 802 7935

Bos Leonard Peter +39 045 802 7987

Caliari Marco +39 045 802 7904

Canevari Giacomo +39 045 8027979

Chignola Roberto 045 802 7953

Collet Francesca

Daffara Claudia +39 045 802 7942

Dai Pra Paolo +39 0458027093

Daldosso Nicola +39 045 8027076 - 7828 (laboratorio)

De Sinopoli Francesco 045 842 5450

Dipasquale Federico Luigi

Enrichi Francesco

Fioroni Tamara 0458028489

Gnoatto Alessandro 045 802 8537

Gregorio Enrico 045 802 7937

Laking Rosanna Davison

Lubian Diego 045 802 8419

Mantese Francesca +39 045 802 7978

Mantovani Matteo 045-802(7814)

Mattiolo Davide

Mazzuoccolo Giuseppe +39 0458027838

Nardon Chiara

Orlandi Giandomenico

giandomenico.orlandi at 045 802 7986

Raffaele Alice

Rizzi Romeo +39 045 8027088

Solitro Ugo +39 045 802 7977

Vincenzi Elia

Zuccher Simone

Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University. Please select your Study Plan based on your enrolment year.

Final exam

2° Year


3° Year

Final exam
Modules Credits TAF SSD
Between the years: 1°- 2°- 3°
Further activities
Between the years: 1°- 2°- 3°

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.

SPlacements in companies, public or private institutions and professional associations

Teaching code



Romeo Rizzi



Scientific Disciplinary Sector (SSD)





Secondo semestre dal Mar 7, 2022 al Jun 10, 2022.

Learning outcomes

The student will encounter in concrete the concepts of: problems, models, formulations of operations research, but also of instances, algorithms, reductions and mappings among problems of the computer science field. The course will propose some models of operations research, at least the following: linear programming (LP), integer linear programming (ILP), max-flows and min-cuts, bipartite matchings and node covers, minimum spanning trees, shortest paths, Eulerian paths, and some models resorting on dynamic programming among which some knapsack variants. For all these models/problems, except PLI, the student will learn the solving algorithms, the properties on which they hinge, and how to conduct their execution. However, besides and beyond this, the course aims at building a good and active relationship, practice, and acquaintance, with general mathematical methodologies and techniques (more typical of discrete math and for this reason not yet fully assimilated from our students) and some basic underpinnings of computer science. In particular, we insist on the dialog with problems and with the art/technique of conjecturing, no occasion is lost to spotlight where invariants and monovariants play a role in proofs, algorithms and data structures. We build up confidence with mathematical induction as an active tool for problem solving, and introducing the dialects of induction most voted to efficiency (divide et impera, recursion with memoization, dynamic programming). Some basic principles of informatics are underlined, like coding, algorithms, data structures, recursion as a counterpart of mathematical induction and of computability. (In some editions of the course first scratch introductions to numerability and computability have been offered). Coming to efficiency, our central perspective, the use of asymptotic notation is justified and adopted, the classes P, NP, coNP are introduced, and the concepts of good characterizations, good conjectures and good theorems are illustrated in length and complexity theory is advertised as a lively source of new methodologies in the art of facing problems and enquiry their intrinsic structural properties. Several aspects of the role and importance of the art of reducing one problem to another are discussed and clarified. The life cycle of a good conjecture, the workflow linking good conjectures and algorithms, the production and interpretation of counterexamples as a means of dialog with the problem, and the possible use of them in obtaining NP-completeness proofs, are all discussed, investigated and exemplified in action. Explicit emphasis is constantly given to the role and use of certificates. Meanwhile these transversal and high competences of methodological interest and imprinting are delivered, the students is asked to learn and develop several concrete procedural competences, in particular within LP, and in an algorithmic treatment of graph theory, introduced as a versatile model and an intuitive and expressive language for the formulation of problems. For a complete and detailed list of all these procedural competences delivered and requested, see the past exams and corrections over the various editions of the course. The notions from computational complexity introduced in the course, and the attention to the languages of the certificates, will lead the student to recognize with more awareness the structure of a sound proof. Dealing with instances, problems, models, both from the perspective of algorithms and of models and formulations, will enforce the attitude and competence in casting simple problems from the applications into mathematical models. The knowledge of the paradigmatic results of linear programming theory (duality, complementary slackness, economic interpretation, sensitivity analysis) will provide the student with important tools in obtaining non-trivial insights on the practical problem from the model.


Operations Research offers quantitative methods and models for the optimal management of resources, and optimization of profits, services, strategies, procedures.
This course of Operations Research gets to Mathematical Programming moving from Algorithmics and Computational Complexity.
After revisiting mathematical induction, recursion, divide et impera, with a curiosity driven problem solving approach, we insist on dynamic programming thinking which gets then exemplified in a few classical models of Operations Research and Computational Biology.
With emphasis on method and techniques, we get involved in formulating, encoding and modeling problems, conjecturing about them, reducing one to the other,
and well characterizing them.
The course offers an in-depth introduction to linear programming.
Following the historical path, we introduce graphs as for modeling,
and explore the basic fundamental results in combinatorial optimization and graph theory.


1. Basic Notions

2. Introduction to Algorithms and Complexity
analysis of a few algorithms
design techniques (recursion, divide et impera, recursion with memoization, dynamic programming, greedy)
complexity theory (P, NP, co-NP, good characterizations, good conjectures, examples of NP-completeness proofs)

3. Combinatorial Optimization Models
knapsack problems
Problems on sequences
Problems on DAGs

4. Introduction to Graph Theory
graphs and digraphs as models
a few good characterizations (bipartite, Eulerian, acyclic, planar graphs)
a few NP-hard models (Hamiltonian cycles, cliques, colorability)
shortest paths
minimum spanning trees
maximum flows
bipartite matchings

5. Linear Programming (LP)
the LP and the ILP models (definition, motivations, complexity, role)
geometric method and view (feasibility space,
pivot, duality, dual variables, degeneracy, complementary slackness)
standard and canonical form
simplex method
duality theory
complementary slackness
economic interpretation of the dual variables
sensitivity analysis


At the following page you find a list of available materials (books, notes, videos) about topics covered within the course:

If you find out further effective material help us enlarging this list.

Examination Methods

At the end of the course, a written exam (now on the PC) with various types of exercises and questions on the more procedural competences acquired during the course. You can add (in full or in part) to the mark acquired at the exam by conducting projects aiming at improving aspects and/or materials of the course in a broad sense.
The exam is the very same regardless on whether you have attended or not the course. The archives of the past exams, the relative corrections, and the videos of the classes, all can help overcoming the difficulties of the non-attending student. Despite these resources, the more methodological messages of the course remain difficult to acquire without active participation and attendance to the lessons, and this can penalize the student, also at the exam.
Starting with the 2018/19 edition, with the onset of the COVID-19 and the necessity to spend the exams from remote, we have switched to an electronic format for the exam, followed by a brief oral assessment, confrontation and discussion.
We are still working to refine the platform and materials for this new exam, and we are happy to welcome projects that help us in this complex and costly update. One of the next goals here is to integrate the historical archive with the electronic part.
The materials of the previous years (all the texts of the exams and related corrections from 2011 onwards) remain in any case excellent references. Even before the migration to the electronic format we have always seeked transparency. Even before the migration to electronic format, we always sought transparency on the correction procedures and evaluation mechanisms.

Rather: given that everything is constantly evolving and everyone's participation and contribution is so determinant, even for what is the verification of the skills acquired and the work done, we warmly invite each student to register in the Telegram group of the course which, together with other useful links and resources, can be conveniently reached from the course web page:

We underline a peculiarity of the Operations Research course, the only one in discrete mathematics at the bachelor: the approach and spirit with which you should approach the course and the exam, and what to deliver and elaborate in your answers to the exercises, is actually related to some deep methodological messages that we decided to place at the core of the course. The more the student adopts and interprets these approaches, the more he/she will be proactive in the course and in collaborating to any verification, the more enriching the course and the more fun the exam will be. This will be important in getting the most from the course and achieve full satisfaction and recognition at the exam.

Type D and Type F activities

Le attività formative di tipologia D o F comprendono gli insegnamenti impartiti presso l'Università di Verona o periodi di stage/tirocinio professionale.
Nella scelta delle attività di tipo D, gli studenti dovranno tener presente che in sede di approvazione si terrà conto della coerenza delle loro scelte con il progetto formativo del loro piano di studio e dell'adeguatezza delle motivazioni eventualmente fornite. Dal 1° dicembre 2021 al 27 febbraio 2022 e dal 2 maggio 2022 al 15 luglio 2022, tramite il presente modulo gli studenti possono richiedere l'inserimento di attività didattiche in TAF D ed F che non possono inserire autonomamente nel proprio piano di studi tramite la procedura on-line.

COMPETENZE LINGUISTICHE - dal 1° ottobre 2021 (Delibera del Consiglio della Scuola di Scienze e Ingegneria del 30 marzo 2021) per gli immatricolati dall'A.A. 2021/2022

  • Lingua inglese: vengono riconosciuti automaticamente 3 CFU per ogni livello di competenza superiore a quello richiesto dal corso di studio (se non già riconosciuto nel ciclo di studi precedente).
  • Altre lingue e italiano per stranieri: vengono riconosciuti automaticamente 3 CFU per ogni livello di competenza a partire da A2 (se non già riconosciuto nel ciclo di studi precedente).
Tali CFU saranno riconosciuti, fino ad un massimo di 6 CFU complessivi, di tipologia F se il piano didattico lo consente, oppure di tipologia D.
Ulteriori crediti a scelta per conoscenze linguistiche potranno essere riconosciuti solo se coerenti con il progetto formativo dello studente e se adeguatamente motivati.

Scopri i percorsi formativi promossi dal  Teaching and learning centre dell'Ateneo, destinati agli studenti iscritti ai corsi di laurea, volti alla promozione delle competenze trasversali:

Primo semestre From 10/4/21 To 1/28/22
years Modules TAF Teacher
1° 2° 3° Basis of general chemistry D Chiara Nardon

Career prospects

Module/Programme news

News for students

There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details.

Area riservata studenti


As stated in point 25 of the Teaching Regulations for the A.Y. 2021/2022, except for specific practical or lab activities, attendance is not mandatory. Regarding these activities, please see the web page of each module for information on the number of hours that must be attended on-site.
Please refer to the Crisis Unit's latest updates for the mode of teaching.



List of theses and work experience proposals

theses proposals Research area
Formule di rappresentazione per gradienti generalizzati Mathematics - Analysis
Formule di rappresentazione per gradienti generalizzati Mathematics - Mathematics
Mathematics Bachelor and Master thesis titles Various topics
Stage Research area
Internship proposals for students in mathematics Various topics

Gestione carriere

Further services

I servizi e le attività di orientamento sono pensati per fornire alle future matricole gli strumenti e le informazioni che consentano loro di compiere una scelta consapevole del corso di studi universitario.