Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

Academic calendar

The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.

Academic calendar

Course calendar

The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..

Definition of lesson periods
Period From To
I semestre Oct 1, 2019 Jan 31, 2020
II semestre Mar 2, 2020 Jun 12, 2020
Exam sessions
Session From To
Sessione invernale d'esame Feb 3, 2020 Feb 28, 2020
Sessione estiva d'esame Jun 15, 2020 Jul 31, 2020
Sessione autunnale d'esame Sep 1, 2020 Sep 30, 2020
Degree sessions
Session From To
Sessione estiva di laurea Jul 22, 2020 Jul 22, 2020
Sessione autunnale di laurea Oct 14, 2020 Oct 14, 2020
Sessione autunnale di laurea solo triennale Dec 10, 2020 Dec 10, 2020
Sessione invernale di laurea Mar 16, 2021 Mar 16, 2021
Holidays
Period From To
Festa di Ognissanti Nov 1, 2019 Nov 1, 2019
Festa dell'Immacolata Dec 8, 2019 Dec 8, 2019
Vacanze di Natale Dec 23, 2019 Jan 6, 2020
Vacanze di Pasqua Apr 10, 2020 Apr 14, 2020
Festa della Liberazione Apr 25, 2020 Apr 25, 2020
Festa del lavoro May 1, 2020 May 1, 2020
Festa del Santo Patrono May 21, 2020 May 21, 2020
Festa della Repubblica Jun 2, 2020 Jun 2, 2020
Vacanze estive Aug 10, 2020 Aug 23, 2020

Exam calendar

Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.

Exam calendar

Should you have any doubts or questions, please check the Enrolment FAQs

Academic staff

A B C D E F G L M N O P R S V Z

Albi Giacomo

giacomo.albi@univr.it +39 045 802 7913

Angeleri Lidia

lidia.angeleri@univr.it 045 802 7911

Baldo Sisto

sisto.baldo@univr.it 045 802 7935

Bos Leonard Peter

leonardpeter.bos@univr.it +39 045 802 7987

Caliari Marco

marco.caliari@univr.it +39 045 802 7904

Canevari Giacomo

giacomo.canevari@univr.it +39 045 8027979

Chignola Roberto

roberto.chignola@univr.it 045 802 7953

Collet Francesca

francesca.collet@univr.it

Cubico Serena

serena.cubico@univr.it 045 802 8132

Daffara Claudia

claudia.daffara@univr.it +39 045 802 7942

Dai Pra Paolo

paolo.daipra@univr.it +39 0458027093

Daldosso Nicola

nicola.daldosso@univr.it +39 045 8027076 - 7828 (laboratorio)

Delledonne Massimo

massimo.delledonne@univr.it 045 802 7962; Lab: 045 802 7058

De Sinopoli Francesco

francesco.desinopoli@univr.it 045 842 5450

Dipasquale Federico Luigi

federicoluigi.dipasquale@univr.it

Enrichi Francesco

francesco.enrichi@univr.it +390458027051

Fioroni Tamara

tamara.fioroni@univr.it 0458028489

Gnoatto Alessandro

alessandro.gnoatto@univr.it 045 802 8537

Gonzato Guido

guido.gonzato@univr.it 045 802 8303

Gregorio Enrico

Enrico.Gregorio@univr.it 045 802 7937

Laking Rosanna Davison

rosanna.laking@univr.it

Lubian Diego

diego.lubian@univr.it 045 802 8419

Mantese Francesca

francesca.mantese@univr.it +39 045 802 7978

Mantovani Matteo

matteo.mantovani@univr.it 045-802(7814)

Mattiolo Davide

davide.mattiolo@univr.it

Mazzi Giulio

giulio.mazzi@univr.it

Mazzuoccolo Giuseppe

giuseppe.mazzuoccolo@univr.it +39 0458027838

Nardon Chiara

chiara.nardon@univr.it

Orlandi Giandomenico

giandomenico.orlandi at univr.it 045 802 7986

Pianezzi Daniela

daniela.pianezzi@univr.it

Raffaele Alice

alice.raffaele@univr.it

Rizzi Romeo

romeo.rizzi@univr.it +39 045 8027088

Segala Roberto

roberto.segala@univr.it 045 802 7997

Solitro Ugo

ugo.solitro@univr.it +39 045 802 7977

Vincenzi Elia

elia.vincenzi@univr.it

Zivcovich Franco

franco.zivcovich@univr.it

Zuccher Simone

simone.zuccher@univr.it

Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University. Please select your Study Plan based on your enrolment year.

CURRICULUM TIPO:
Modules Credits TAF SSD
Between the years: 1°- 2°- 3°
Between the years: 1°- 2°- 3°
Other activitites
6
F
-

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




SPlacements in companies, public or private institutions and professional associations

Teaching code

4S00001

Coordinatore

Romeo Rizzi

Credits

6

Language

Italian

Scientific Disciplinary Sector (SSD)

MAT/09 - OPERATIONS RESEARCH

Period

Secondo semestre dal Mar 7, 2022 al Jun 10, 2022.

Learning outcomes

The student will encounter in concrete the concepts of: problems, models, formulations of operations research, but also of instances, algorithms, reductions and mappings among problems of the computer science field. The course will propose some models of operations research, at least the following: linear programming (LP), integer linear programming (ILP), max-flows and min-cuts, bipartite matchings and node covers, minimum spanning trees, shortest paths, Eulerian paths, and some models resorting on dynamic programming among which some knapsack variants. For all these models/problems, except PLI, the student will learn the solving algorithms, the properties on which they hinge, and how to conduct their execution. However, besides and beyond this, the course aims at building a good and active relationship, practice, and acquaintance, with general mathematical methodologies and techniques (more typical of discrete math and for this reason not yet fully assimilated from our students) and some basic underpinnings of computer science. In particular, we insist on the dialog with problems and with the art/technique of conjecturing, no occasion is lost to spotlight where invariants and monovariants play a role in proofs, algorithms and data structures. We build up confidence with mathematical induction as an active tool for problem solving, and introducing the dialects of induction most voted to efficiency (divide et impera, recursion with memoization, dynamic programming). Some basic principles of informatics are underlined, like coding, algorithms, data structures, recursion as a counterpart of mathematical induction and of computability. (In some editions of the course first scratch introductions to numerability and computability have been offered). Coming to efficiency, our central perspective, the use of asymptotic notation is justified and adopted, the classes P, NP, coNP are introduced, and the concepts of good characterizations, good conjectures and good theorems are illustrated in length and complexity theory is advertised as a lively source of new methodologies in the art of facing problems and enquiry their intrinsic structural properties. Several aspects of the role and importance of the art of reducing one problem to another are discussed and clarified. The life cycle of a good conjecture, the workflow linking good conjectures and algorithms, the production and interpretation of counterexamples as a means of dialog with the problem, and the possible use of them in obtaining NP-completeness proofs, are all discussed, investigated and exemplified in action. Explicit emphasis is constantly given to the role and use of certificates. Meanwhile these transversal and high competences of methodological interest and imprinting are delivered, the students is asked to learn and develop several concrete procedural competences, in particular within LP, and in an algorithmic treatment of graph theory, introduced as a versatile model and an intuitive and expressive language for the formulation of problems. For a complete and detailed list of all these procedural competences delivered and requested, see the past exams and corrections over the various editions of the course. The notions from computational complexity introduced in the course, and the attention to the languages of the certificates, will lead the student to recognize with more awareness the structure of a sound proof. Dealing with instances, problems, models, both from the perspective of algorithms and of models and formulations, will enforce the attitude and competence in casting simple problems from the applications into mathematical models. The knowledge of the paradigmatic results of linear programming theory (duality, complementary slackness, economic interpretation, sensitivity analysis) will provide the student with important tools in obtaining non-trivial insights on the practical problem from the model.

Program

Operations Research offers quantitative methods and models for the optimal management of resources, and optimization of profits, services, strategies, procedures.
This course of Operations Research gets to Mathematical Programming moving from Algorithmics and Computational Complexity.
After revisiting mathematical induction, recursion, divide et impera, with a curiosity driven problem solving approach, we insist on dynamic programming thinking which gets then exemplified in a few classical models of Operations Research and Computational Biology.
With emphasis on method and techniques, we get involved in formulating, encoding and modeling problems, conjecturing about them, reducing one to the other,
and well characterizing them.
The course offers an in-depth introduction to linear programming.
Following the historical path, we introduce graphs as for modeling,
and explore the basic fundamental results in combinatorial optimization and graph theory.

LIST OF TOPICS:

1. Basic Notions
problems
models
algorithms
complexity

2. Introduction to Algorithms and Complexity
analysis of a few algorithms
design techniques (recursion, divide et impera, recursion with memoization, dynamic programming, greedy)
complexity theory (P, NP, co-NP, good characterizations, good conjectures, examples of NP-completeness proofs)

3. Combinatorial Optimization Models
knapsack problems
Problems on sequences
Problems on DAGs

4. Introduction to Graph Theory
graphs and digraphs as models
a few good characterizations (bipartite, Eulerian, acyclic, planar graphs)
a few NP-hard models (Hamiltonian cycles, cliques, colorability)
shortest paths
minimum spanning trees
maximum flows
bipartite matchings

5. Linear Programming (LP)
the LP and the ILP models (definition, motivations, complexity, role)
geometric method and view (feasibility space,
pivot, duality, dual variables, degeneracy, complementary slackness)
standard and canonical form
simplex method
duality theory
complementary slackness
economic interpretation of the dual variables
sensitivity analysis

BOOKS, NOTES AND OTHER DIDACTIC MATERIALS AND RESOURCES:

At the following page you find a list of available materials (books, notes, videos) about topics covered within the course:

http://profs.sci.univr.it/~rrizzi/classes/RO/materiali

If you find out further effective material help us enlarging this list.

Visualizza la bibliografia con Leganto, strumento che il Sistema Bibliotecario mette a disposizione per recuperare i testi in programma d'esame in modo semplice e innovativo.

Examination Methods

At the end of the course, a written exam (now on the PC) with various types of exercises and questions on the more procedural competences acquired during the course. You can add (in full or in part) to the mark acquired at the exam by conducting projects aiming at improving aspects and/or materials of the course in a broad sense.
The exam is the very same regardless on whether you have attended or not the course. The archives of the past exams, the relative corrections, and the videos of the classes, all can help overcoming the difficulties of the non-attending student. Despite these resources, the more methodological messages of the course remain difficult to acquire without active participation and attendance to the lessons, and this can penalize the student, also at the exam.
Starting with the 2018/19 edition, with the onset of the COVID-19 and the necessity to spend the exams from remote, we have switched to an electronic format for the exam, followed by a brief oral assessment, confrontation and discussion.
We are still working to refine the platform and materials for this new exam, and we are happy to welcome projects that help us in this complex and costly update. One of the next goals here is to integrate the historical archive with the electronic part.
The materials of the previous years (all the texts of the exams and related corrections from 2011 onwards) remain in any case excellent references. Even before the migration to the electronic format we have always seeked transparency. Even before the migration to electronic format, we always sought transparency on the correction procedures and evaluation mechanisms.

Rather: given that everything is constantly evolving and everyone's participation and contribution is so determinant, even for what is the verification of the skills acquired and the work done, we warmly invite each student to register in the Telegram group of the course which, together with other useful links and resources, can be conveniently reached from the course web page:

http://profs.sci.univr.it/~rrizzi/classes/RO/index.html

We underline a peculiarity of the Operations Research course, the only one in discrete mathematics at the bachelor: the approach and spirit with which you should approach the course and the exam, and what to deliver and elaborate in your answers to the exercises, is actually related to some deep methodological messages that we decided to place at the core of the course. The more the student adopts and interprets these approaches, the more he/she will be proactive in the course and in collaborating to any verification, the more enriching the course and the more fun the exam will be. This will be important in getting the most from the course and achieve full satisfaction and recognition at the exam.

Bibliography

Type D and Type F activities

I semestre From 10/1/19 To 1/31/20
years Modules TAF Teacher
1° 2° 3° Python programming language D Maurizio Boscaini (Coordinatore)
1° 2° 3° SageMath F Zsuzsanna Liptak (Coordinatore)
1° 2° 3° History of Modern Physics 2 D Francesca Monti (Coordinatore)
1° 2° 3° History and Didactics of Geology D Guido Gonzato (Coordinatore)
II semestre From 3/2/20 To 6/12/20
years Modules TAF Teacher
1° 2° 3° C Programming Language D Sara Migliorini (Coordinatore)
1° 2° 3° C++ Programming Language D Federico Busato (Coordinatore)
1° 2° 3° LaTeX Language D Enrico Gregorio (Coordinatore)
List of courses with unassigned period
years Modules TAF Teacher
1° 2° 3° Corso Europrogettazione D Not yet assigned
1° 2° 3° Corso online ARPM bootcamp F Not yet assigned
1° 2° 3° ECMI modelling week F Not yet assigned
1° 2° 3° ESA Summer of code in space (SOCIS) F Not yet assigned
1° 2° 3° Google summer of code (GSOC) F Not yet assigned

Career prospects


Module/Programme news

News for students

There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details.

Further services

I servizi e le attività di orientamento sono pensati per fornire alle future matricole gli strumenti e le informazioni che consentano loro di compiere una scelta consapevole del corso di studi universitario.


Graduation

Attachments

List of theses and work experience proposals

theses proposals Research area
Formule di rappresentazione per gradienti generalizzati Mathematics - Analysis
Formule di rappresentazione per gradienti generalizzati Mathematics - Mathematics
Mathematics Bachelor and Master thesis titles Various topics
Stage Research area
Internship proposals for students in mathematics Various topics

Attendance

As stated in point 25 of the Teaching Regulations for the A.Y. 2021/2022, except for specific practical or lab activities, attendance is not mandatory. Regarding these activities, please see the web page of each module for information on the number of hours that must be attended on-site.
Please refer to the Crisis Unit's latest updates for the mode of teaching.

Career management


Area riservata studenti