Studiare

In questa sezione è possibile reperire le informazioni riguardanti l'organizzazione pratica del corso, lo svolgimento delle attività didattiche, le opportunità formative e i contatti utili durante tutto il percorso di studi, fino al conseguimento del titolo finale.

Queste informazioni sono destinate esclusivamente agli studenti e alle studentesse già iscritti a questo corso.
Se sei un nuovo studente interessato all'immatricolazione, trovi le informazioni sul percorso di studi alla pagina del corso:

Laurea in Matematica applicata - Immatricolazione dal 2025/2026

Il piano didattico è l'elenco degli insegnamenti e delle altre attività formative che devono essere sostenute nel corso della propria carriera universitaria.
Selezionare il piano didattico in base all'anno accademico di iscrizione.

CURRICULUM TIPO:

2° Anno   Attivato nell'A.A. 2020/2021

InsegnamentiCreditiTAFSSD
6
B
MAT/03
6
A
MAT/02
6
C
SECS-P/01
6
C
SECS-P/01
Lingua inglese B1
6
E
-

3° Anno   Attivato nell'A.A. 2021/2022

InsegnamentiCreditiTAFSSD
6
C
SECS-P/05
Prova finale
6
E
-
Attivato nell'A.A. 2020/2021
InsegnamentiCreditiTAFSSD
6
B
MAT/03
6
A
MAT/02
6
C
SECS-P/01
6
C
SECS-P/01
Lingua inglese B1
6
E
-
Attivato nell'A.A. 2021/2022
InsegnamentiCreditiTAFSSD
6
C
SECS-P/05
Prova finale
6
E
-
Insegnamenti Crediti TAF SSD
Tra gli anni: 1°- 2°- 3°
Tra gli anni: 1°- 2°- 3°
Ulteriori attività formative
6
F
-

Legenda | Tipo Attività Formativa (TAF)

TAF (Tipologia Attività Formativa) Tutti gli insegnamenti e le attività sono classificate in diversi tipi di attività formativa, indicati da una lettera.




S Stage e tirocini presso imprese, enti pubblici o privati, ordini professionali

Codice insegnamento

4S00001

Docenti

Romeo Rizzi,

Coordinatore

Romeo Rizzi

Crediti

6

Lingua di erogazione

Italiano

Settore Scientifico Disciplinare (SSD)

MAT/09 - RICERCA OPERATIVA

Periodo

Secondo semestre dal 7 mar 2022 al 10 giu 2022.

Obiettivi formativi

Lo studente di matematica incontrera` in concretezza i concetti di: problemi, modelli e formulazioni della ricerca operativa, ma anche di istanze, algoritmi, riduzioni e mappature tra problemi dell'informatica. Il corso proporra` alcuni dei principali modelli della ricerca operativa, quantomeno i seguenti: programmazione lineare (PL), programmazione lineare intera (PLI), massimo flusso e minimo taglio, accoppiamenti massimi e coperture minime in grafi bipartiti, alberi ricoprenti di peso minimo, cammini minimi, cammini Euleriani, alcuni modelli di programmazione dinamica tra cui delle varianti dello zaino. Per tutti questi modelli/problemi tranne la PLI lo studente apprendera` degli algoritmi risolutori, le proprieta` su cui poggiano, e come condurne l'esecuzione. Tuttavia, il corso si prefigge anche di costruire un buon rapporto e dimestichezza dello studente con tecniche e metodologie matematiche generali e con alcuni capisaldi delle discipline informatiche. Si insiste sul dialogo coi problemi e con l'arte e tecnica del congetturare, non si perde occasione di mettere in evidenza dove lavorino invarianti e monovarianti nelle dimostrazioni, algoritmi e strutture dati. Si sviluppa confidenza con l'induzione matematica e coi suoi dialetti all'insegna dell'efficienza (divide et impera, ricorsione con memoizzazione, programmazione dinamica). Si evidenziano alcuni principi base dell'informatica, quali la codifica, gli algoritmi, le strutture dati, la ricorsione come controparte dell'induzione e del computabile. (In alcune edizioni del corso si sono offerti accenni su numerabilita` e computabilita`). Sul piano dell'efficienza, cui la nostra impostazione e` devota, si giustifica ed utilizza la notazione asintotica e vengono introdotte le classi P, NP, coNP ed i concetti di buone caratterizzazioni, buone congetture e buoni teoremi e si illustra e pubblicizza come la teoria della complessita` possa fungere da fucina metodologica nell'arte di affrontare problemi e condurne indagine delle proprieta` strutturali intrinseche. Vengono ampiamente discussi e chiariti alcuni aspetti del ruolo ed importanza dell'arte del ridurre un problema ad un altro. Viene illustrato il flusso di lavoro attorno ad una buona congettura, la produzione ed interpretazione di controesempi come dialogo col problema e l'eventuale utilizzo degli stessi per ottenere dimostrazioni di NP-completezza. Costantemente, viene data esplicita enfasi al ruolo ed utilizzo dei certificati. Mentre si consegnano e si insiste su queste competenze trasversali ed alte, di stampo metodologico, diverse sono le competenze di tipo procedurale che lo studente viene chiamato ad apprendere e sviluppare, in particolare nell'ambito della PL, ed in una trattazione algoritmica alla teoria dei grafi, introdotti come modelli versatili e linguaggio immediato ed espressivo alla formulazione di problemi. Per un elenco completo e puntuale di tutte le competenze procedurali richieste, rimandiamo ai temi e correzioni dei temi svolti nelle varie edizioni del corso. Nel tempo i temi tendono ad arricchirsi per includere competenze comunque impartite tra quelle poi richieste all'esame. Confidiamo che le nozioni di complessita` computazionale introdotte e l'attenzione ai certificati conducano lo studente a riconoscere con maggior consapevolezza la struttura di una dimostrazione rigorosa. L'esposizione a istanze, problemi, e modelli, con occhio sia agli algoritmi che alle formulazioni, rafforzera` la capacita` ed attitudine a formalizzare matematicamente problemi espressi nel linguaggio naturale. Nei risultati paradigmatici (dualita`, scarti complementari, interpretazione economica, analisi di sensitivita`) della programmazione lineare lo studente incontrera` modi importanti e non banali per trarre profitto da queste formulazioni per meglio chiarire ed affrontare le reali problematiche di interesse sottese. Il linguaggio dei grafi, e gli strumenti della PL e della PLI, data la loro importanza e centralita` sia storica che attuale, rimangono a tutt'oggi temi d'avanguardia nel campo della Matematica Applicata. La loro padronanza consente di svolgere compiti professionali definiti, ad esempio come supporto modellistico-matematico e computazionale ad attivita` dell'industria, dei servizi e nella pubblica amministrazione, come anche nel campo dell'insegnamento della matematica o della diffusione della cultura scientifica.

Programma

La Ricerca Operativa mira a fornire dei metodi quantitativi per la gestione delle risorse e l'ottimizzazione dei profitti, dei servizi, delle strategie.
Questo corso di Ricerca Operativa muove alla Programmazione Matematica partendo
dall'Algoritmica a dalla Complessità Computazionale.
Richiamata l'induzione matematica, la ricorsione ed il divide et impera, si cerca di trasmettere in modo ampio ed approfondito l'approccio della programmazione dinamica esemplificandolo in vari contesti tra cui alcuni modelli classici della Ricerca Operativa.
Con enfasi sulle tecniche, si discute di formulare, codificare e modellare problemi, di ridurre problemi ad altri, e di ben caratterizzare problemi.
Il corso offre un'introduzione approfondita alla programmazione lineare.
Motivati dalla modellistica, e seguendo percorsi storici, si introducono i grafi e si esplorano alcuni risultati fondamentali di ottimizzazione combinatoria e teoria dei grafi.

ELENCO DEGLI ARGOMENTI:

1. Nozioni di base
problemi
modelli
algoritmi
complessità

2. Introduzione agli algoritmi
analisi di alcuni algoritmi
tecniche di progetto (ricorsione, divide et impera, ricorsione con memoizzazione, programmazione dinamica, greedy)
teoria della complessità computazionale (P, NP, co-NP, buone caratterizzazioni, buone congetture, esempi di dimostrazioni di NP-completezza)

3. Alcuni modelli di ottimizzazione combinatoria
problemi di zaino
problemi su sequenze
problemi su DAGs

4. Fondamenti di Programmazione Lineare (PL)
la PL e la PLI (definizione, motivazioni, complessità, ruolo)
metodo geometrico e visione geometrica della PL (spazio delle soluzioni,
pivot, dualità, variabili duali, problemi degeneri, scarti complementari)
forme standard e canonica
il metodo del simplesso per la PL (descrizione ed analisi)
teoria della dualità
condizioni degli scarti complementari
interpretazione economica per le variabili duali
analisi di sensitività

5. Introduzione alla teoria dei grafi
grafi e digrafi come modelli
alcune buone caratterizzazioni
(grafi bipartiti, euleriani, hamiltoniani, planari)
cammini minimi
alberi ricoprenti di peso minimo
flussi massimi
accoppiamenti bipartiti

TESTI, DISPENSE E MATERIALI:

Trovi elenco completo dei materiali resi disponibili o comunque utilizzabili proficuamente alla pagina:

http://profs.sci.univr.it/~rrizzi/classes/RO/materiali

Se individui efficaci materiali che valuti compendiare utilmente tale lista, o se comunque la scopri incompleta, ti preghiamo di suggerirci le eventuali integrazioni.

Bibliografia

Visualizza la bibliografia con Leganto, strumento che il Sistema Bibliotecario mette a disposizione per recuperare i testi in programma d'esame in modo semplice e innovativo.

Modalità d'esame

A fine corso un esame scritto (ora al calcolatore) con diverse tipologie di esercizi e domande sulle competenze più procedurali acquisite durante il corso.
Il testo d'esame e le modalità della sua valutazione sono le medesime per studenti frequentanti o non frequentanti, senza alcuna distinzione. E` chiaro e risulta nei fatti che lo studente che non ha frequentato sia penalizzato da una minore chiarezza su quali siano le richieste avanzate dal docente con gli esercizi. L'archivio dei temi passati, con relativi svolgimenti, mira quindi a quantomeno chiarire cosa debba essere prodotto dallo studente per ottenere dei punti a fronte di un esercizio. Sono inoltre disponibili i video delle lezioni da diversi anni a questa parte. Nonostante questo i messaggi del corso di stampo più metodologico restano difficili da acquisire senza una partecipazione attiva e la frequenza alle lezioni, e questo può penalizzare lo studente, talvolta anche all'esame.
A partire dall'edizione 2019/20, per via del COVID-19 e la necessità di svolgere gli esami da remoto, siamo passati ad un formato elettronico dell'esame, cui segue un breve orale di accertamento e come occasione per un confronto diretto. Stiamo ancora lavorando ad affinare la piattaforma ed i materiali per questo nuovo esame, e accogliamo volentieri progetti che ci aiutano in questo complesso e gravoso aggiornamento. Un prossimo obiettivo è integrare l'archivio storico con la parte elettronica.
I materiali degli anni precedenti (tutti i testi degli esami e relative correzioni dal 2011 in poi) rimangono comunque ottimi riferimenti. Già prima della migrazione al formato elettronico abbiamo sempre ricercato la trasparenza sui meccanismi di correzione e valutativi.

Piuttosto: dato che ogni cosa è in continua evoluzione e la partecipazione e contributo di tutti è così determinante, anche per quello che è la verifica delle competenze acquisite e del lavoro fatto, invitiamo caldamente ogni studente ad iscriversi al gruppo Telegram del corso che, insieme ad altri link e risorse utili, può essere convenientemente raggiunto dalla pagina web del corso:

http://profs.sci.univr.it/~rrizzi/classes/RO/index.html

Vogliamo evidenziare una particolarità marcata di questo che è l'unico corso in ambito matematica discreta offerto alla triennale: Lo spirito con cui l'esame va affrontato e di cosa e come elaborare e proporre in risposta agli esercizi e` in linea con alcuni dei messaggi metodologici che si mira a trasmettere con il corso. Speriamo lo studente possa fare propri questi approcci e queste metodologie, che specie quando operavamo col cartaceo potevano apparire come sfumature o stranezze. Più lo studente saprà interpretare e fare proprie le nostre prospettive, e si approccerà in modo collaborativo e propositivo al corso ed alla verifica, più l'esame potrà essere divertente e di soddisfazione.

Le/gli studentesse/studenti con disabilità o disturbi specifici di apprendimento (DSA), che intendano richiedere l'adattamento della prova d'esame, devono seguire le indicazioni riportate QUI