Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

Academic calendar

The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.

Academic calendar

Course calendar

The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..

Definition of lesson periods
Period From To
Primo semestre Oct 4, 2021 Jan 28, 2022
Secondo semestre Mar 7, 2022 Jun 10, 2022
Exam sessions
Session From To
Sessione invernale d'esame Jan 31, 2022 Mar 4, 2022
Sessione estiva d'esame Jun 13, 2022 Jul 29, 2022
Sessione autunnale d'esame Sep 1, 2022 Sep 29, 2022
Degree sessions
Session From To
Sessione estiva di laurea Jul 21, 2022 Jul 21, 2022
Sessione autunnale di laurea Oct 13, 2022 Oct 13, 2022
Sessione autunnale di laurea - dicembre Dec 7, 2022 Dec 7, 2022
Sessione invernale Mar 16, 2023 Mar 16, 2023
Period From To
Festa di Tutti i Santi Nov 1, 2021 Nov 1, 2021
Festa dell'Immacolata Concezione Dec 8, 2021 Dec 8, 2021
Festività natalizie Dec 24, 2021 Jan 2, 2022
VACANZE DI PASQUA Apr 15, 2022 Apr 19, 2022
FESTA DEL LAVORO May 1, 2022 May 1, 2022
Festa di San Zeno - S. Patrono di Verona May 21, 2022 May 21, 2022
Festa della Repubblica Jun 2, 2022 Jun 2, 2022
Chiusura estiva Aug 15, 2022 Aug 20, 2022

Exam calendar

Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.

Exam calendar

Should you have any doubts or questions, please check the Enrolment FAQs

Academic staff


Albi Giacomo +39 045 802 7913

Angeleri Lidia 045 802 7911

Baldo Sisto 045 802 7935

Bos Leonard Peter +39 045 802 7987

Caliari Marco +39 045 802 7904

Canevari Giacomo +39 045 8027979

Chignola Roberto 045 802 7953

Collet Francesca

Cubico Serena 045 802 8132

Daffara Claudia +39 045 802 7942

Dai Pra Paolo +39 0458027093

Daldosso Nicola +39 045 8027076 - 7828 (laboratorio)

Delledonne Massimo 045 802 7962; Lab: 045 802 7058

De Sinopoli Francesco 045 842 5450

Dipasquale Federico Luigi

Enrichi Francesco +390458027051

Fioroni Tamara 0458028489

Gnoatto Alessandro 045 802 8537

Gonzato Guido 045 802 8303

Gregorio Enrico 045 802 7937

Laking Rosanna Davison

Lubian Diego 045 802 8419

Mantese Francesca +39 045 802 7978

Mantovani Matteo 045-802(7814)

Mattiolo Davide

Mazzi Giulio

Mazzuoccolo Giuseppe +39 0458027838

Nardon Chiara

Orlandi Giandomenico

giandomenico.orlandi at 045 802 7986

Pianezzi Daniela

Raffaele Alice

Rizzi Romeo +39 045 8027088

Segala Roberto 045 802 7997

Solitro Ugo +39 045 802 7977

Vincenzi Elia

Zivcovich Franco

Zuccher Simone

Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University. Please select your Study Plan based on your enrolment year.

Modules Credits TAF SSD
Between the years: 1°- 2°- 3°
Further activities
Between the years: 1°- 2°- 3°

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.

SPlacements in companies, public or private institutions and professional associations

Teaching code






Scientific Disciplinary Sector (SSD)



Primo semestre dal Oct 4, 2021 al Jan 28, 2022.

Learning outcomes

Topics treated in this course are: Calculus for functions of several variables, sequences and series of functions, ordinary differential equations, Lebesgue measure and integral. Emphasis will be given to examples and applications.

At the end of the course, students must possess adequate skills of synthesis and abstraction. They must recognize and produce rigorous proofs. They must be able to formalize and solve moderately difficult problems on the arguments of the course.


The entire course will be available online. In addition, a number of the lessons/all the lessons (see the course
schedule) will be held in-class.

i) Calculus in several variables. Neighborhoods in several variables, continuity in several variables, directional derivatives, differential of functions in several variables, Theorem of Total Differential, gradient of scalar functions, Jacobian matrix for vector-valued functions, level curves of scalar functions. Parametrized surfaces, tangent and normal vectors, changes of coordinates. Higher order derivatives and differentials, Hessian matrix, Schwarz's Theorem, Taylor's Series.

(ii) Optimization problems for functions in several variables. Critical points, free optimization, constrained optimization, Lagrange's Multiplier Theorem, Implicit and inverse function theorem, Contraction Principle.

(iii) Integral of functions in several variables. Fubini and Tonelli theorems, integral on curves, change of variables formula.

(iv) Integral of scalar function on surfaces, vector fields, conservatice vector fields, scalar potentials, curl and divergence of a vector fields, introduction to differential forms, closed and exact forms, Poincare lemma, Gauss-Green formulas.

(v) Flux through surfaces, Stokes' Theorem, Divergence Theorem

(vi) Introduction to metric spaces and normed spaces, spaces of functions, sequence of functions, uniform convergence, function series, total convergence, derivation and integration of a series of functions.

(vii) Introduction to Lebesgue's Measure Theory. Measurable sets and functions, stability of measurable functions, simple functions, approximation results, Lebesgue integral. Monotone Convergence Theorem, Fatou's Lemma, Dominated convergence Theorem and their consequences.

(viii) Ordinary differential equation, existence and uniqueness results, Cauchy-Lipschitz's Theorem. Extension of a solution, maximal solution, existence and uniqueness results for systems of ODE, linear ODE of order n, Variation of the constants method,
other resolutive formulas.

(ix) Fourier's series for periodic functions, convergence results, application to solutions of some PDE.

Examination Methods

The final exam consists of a written test followed, in case of a positive result, by an oral test. The written test consists of some exercises on the program: students are exonerated from the first part of the test if they pass a mid-term test at the beginning of december. The written test evaluates the ability of students at solving problems pertaining to the syllabus of the course, and also their skills in the analysis, synthesis and abstraction of questions stated either in the natural language or in the specific language of mathematics. The written test is graded on a scale from 0 to 30 points (best), with a pass mark of 18/30..
The oral test will concentrate mainly but not exclusively on the theory. It aims at verifying the ability of students at constructing correct and rigorous proofs and their skills in analysis, synthesis and abstraction. The oral exam is graded on a scale from -5 to +5 point, which are added to the marks earned in the written test.
Both written and oral test will be performed online.

Type D and Type F activities

Le attività formative di tipologia D sono a scelta dello studente, quelle di tipologia F sono ulteriori conoscenze utili all’inserimento nel mondo del lavoro (tirocini, competenze trasversali, project works, ecc.). In base al Regolamento Didattico del Corso, alcune attività possono essere scelte e inserite autonomamente a libretto, altre devono essere approvate da apposita commissione per verificarne la coerenza con il piano di studio. Le attività formative di tipologia D o F possono essere ricoperte dalle seguenti attività.

1. Insegnamenti impartiti presso l'Università di Verona

Comprendono gli insegnamenti sotto riportati e/o nel Catalogo degli insegnamenti (che può essere filtrato anche per lingua di erogazione tramite la Ricerca avanzata).

Modalità di inserimento a libretto: se l'insegnamento è compreso tra quelli sottoelencati, lo studente può inserirlo autonomamente durante il periodo in cui il piano di studi è aperto; in caso contrario, lo studente deve fare richiesta alla Segreteria, inviando a il modulo nel periodo indicato.

2. Attestato o equipollenza linguistica CLA

Oltre a quelle richieste dal piano di studi, per gli immatricolati dall'A.A. 2021/2022 vengono riconosciute:

  • Lingua inglese: vengono riconosciuti 3 CFU per ogni livello di competenza superiore a quello richiesto dal corso di studio (se non già riconosciuto nel ciclo di studi precedente).
  • Altre lingue e italiano per stranieri: vengono riconosciuti 3 CFU per ogni livello di competenza a partire da A2 (se non già riconosciuto nel ciclo di studi precedente).

Tali cfu saranno riconosciuti, fino ad un massimo di 6 cfu complessivi, di tipologia F se il piano didattico lo consente, oppure di tipologia D. Ulteriori crediti a scelta per conoscenze linguistiche potranno essere riconosciuti solo se coerenti con il progetto formativo dello studente e se adeguatamente motivati.

Gli immatricolati fino all'A.A. 2020/2021 devono consultare le informazioni che si trovano qui.

Modalità di inserimento a librettorichiedere l’attestato o l'equipollenza al CLA e inviarlo alla Segreteria Studenti - Carriere per l’inserimento dell’esame in carriera, tramite mail:

3. Competenze trasversali

Scopri i percorsi formativi promossi dal TALC - Teaching and learning center dell'Ateneo, destinati agli studenti regolarmente iscritti all'anno accademico di erogazione del corso

Modalità di inserimento a libretto: non è previsto l'inserimento dell'insegnamento nel piano di studi. Solo in seguito all'ottenimento dell'Open Badge verranno automaticamente convalidati i CFU a libretto. La registrazione dei CFU in carriera non è istantanea, ma ci saranno da attendere dei tempi tecnici.  

4. Periodo di stage/tirocinio

Oltre ai CFU previsti dal piano di studi (verificare attentamente quanto indicato sul Regolamento Didattico): qui informazioni su come attivare lo stage. 

Verificare nel regolamento quali attività possono essere di tipologia D e quali di tipologia F.

Insegnamenti e altre attività che si possono inserire autonomamente a libretto


Primo semestre From 10/4/21 To 1/28/22
years Modules TAF Teacher
1° 2° 3° Algorithms D Roberto Segala (Coordinatore)
1° 2° 3° Basis of general chemistry D Chiara Nardon
1° 2° 3° Genetics D Massimo Delledonne (Coordinatore)
Modules borrowed from the Faculty of Scienze e Ingegneria
Secondo semestre From 3/7/22 To 6/10/22
years Modules TAF Teacher
1° 2° 3° Algorithms D Roberto Segala (Coordinatore)
1° 2° 3° LaTeX Language D Enrico Gregorio (Coordinatore)
1° 2° 3° Organization Studies D Serena Cubico (Coordinatore)
1° 2° 3° History and Didactics of Geology D Guido Gonzato (Coordinatore)
List of courses with unassigned period
years Modules TAF Teacher
Subject requirements: mathematics D Franco Zivcovich
1° 2° 3° ECMI modelling week F Not yet assigned
1° 2° 3° ESA Summer of code in space (SOCIS) F Not yet assigned
1° 2° 3° Google summer of code (GSOC) F Not yet assigned
1° 2° 3° Python programming language D Giulio Mazzi (Coordinatore)

Career prospects

Module/Programme news

News for students

There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details.

Further services

I servizi e le attività di orientamento sono pensati per fornire alle future matricole gli strumenti e le informazioni che consentano loro di compiere una scelta consapevole del corso di studi universitario.



List of theses and work experience proposals

theses proposals Research area
Formule di rappresentazione per gradienti generalizzati Mathematics - Analysis
Formule di rappresentazione per gradienti generalizzati Mathematics - Mathematics
Mathematics Bachelor and Master thesis titles Various topics
Stage Research area
Internship proposals for students in mathematics Various topics


As stated in point 25 of the Teaching Regulations for the A.Y. 2021/2022, except for specific practical or lab activities, attendance is not mandatory. Regarding these activities, please see the web page of each module for information on the number of hours that must be attended on-site.
Please refer to the Crisis Unit's latest updates for the mode of teaching.

Gestione carriere

Area riservata studenti