Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

A.A. 2021/2022

Academic calendar

The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.

Academic calendar

Course calendar

The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..

Definition of lesson periods
Period From To
Primo semestre Oct 4, 2021 Jan 28, 2022
Secondo semestre Mar 7, 2022 Jun 10, 2022
Exam sessions
Session From To
Sessione invernale d'esame Jan 31, 2022 Mar 4, 2022
Sessione estiva d'esame Jun 13, 2022 Jul 29, 2022
Sessione autunnale d'esame Sep 1, 2022 Sep 29, 2022
Degree sessions
Session From To
Sessione estiva di laurea Jul 21, 2022 Jul 21, 2022
Sessione autunnale di laurea Oct 13, 2022 Oct 13, 2022
Sessione autunnale di laurea - dicembre Dec 7, 2022 Dec 7, 2022
Sessione invernale Mar 16, 2023 Mar 16, 2023
Holidays
Period From To
Festa di Tutti i Santi Nov 1, 2021 Nov 1, 2021
Festa dell'Immacolata Concezione Dec 8, 2021 Dec 8, 2021
Festività natalizie Dec 24, 2021 Jan 2, 2022
VACANZE DI PASQUA Apr 15, 2022 Apr 19, 2022
FESTA DEL LAVORO May 1, 2022 May 1, 2022
Festa di San Zeno - S. Patrono di Verona May 21, 2022 May 21, 2022
Festa della Repubblica Jun 2, 2022 Jun 2, 2022
Chiusura estiva Aug 15, 2022 Aug 20, 2022

Exam calendar

Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.

Exam calendar

Should you have any doubts or questions, please check the Enrolment FAQs

Academic staff

A B C D E F G L M N O R S V Z

Albi Giacomo

giacomo.albi@univr.it +39 045 802 7913

Angeleri Lidia

lidia.angeleri@univr.it 045 802 7911

Baldo Sisto

sisto.baldo@univr.it 045 802 7935

Bos Leonard Peter

leonardpeter.bos@univr.it +39 045 802 7987

Caliari Marco

marco.caliari@univr.it +39 045 802 7904

Canevari Giacomo

giacomo.canevari@univr.it +39 045 8027979

Chignola Roberto

roberto.chignola@univr.it 045 802 7953

Daffara Claudia

claudia.daffara@univr.it +39 045 802 7942

Dai Pra Paolo

paolo.daipra@univr.it +39 0458027093

Daldosso Nicola

nicola.daldosso@univr.it +39 045 8027076 - 7828 (laboratorio)

De Sinopoli Francesco

francesco.desinopoli@univr.it 045 842 5450

Dipasquale Federico Luigi

federicoluigi.dipasquale@univr.it

Fioroni Tamara

tamara.fioroni@univr.it 0458028489

Gnoatto Alessandro

alessandro.gnoatto@univr.it 045 802 8537

Gregorio Enrico

Enrico.Gregorio@univr.it 045 802 7937

Lubian Diego

diego.lubian@univr.it 045 802 8419

Mantese Francesca

francesca.mantese@univr.it +39 045 802 7978

Mantovani Matteo

matteo.mantovani@univr.it 045-802(7814)

Mattiolo Davide

davide.mattiolo@univr.it

Mazzuoccolo Giuseppe

giuseppe.mazzuoccolo@univr.it +39 0458027838

Nardon Chiara

chiara.nardon@univr.it

Orlandi Giandomenico

giandomenico.orlandi at univr.it 045 802 7986

Raffaele Alice

alice.raffaele@univr.it

Rizzi Romeo

romeo.rizzi@univr.it +39 045 8027088

Solitro Ugo

ugo.solitro@univr.it +39 045 802 7977

Vincenzi Elia

elia.vincenzi@univr.it

Zuccher Simone

simone.zuccher@univr.it

Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University. Please select your Study Plan based on your enrolment year.

CURRICULUM TIPO:
ModulesCreditsTAFSSD
6
A
(MAT/02)
6
B
(MAT/03)
6
C
(SECS-P/01)
6
C
(SECS-P/01)
6
E
(L-LIN/12)
ModulesCreditsTAFSSD
6
C
(SECS-P/05)
Final exam
6
E
-

2° Year

ModulesCreditsTAFSSD
6
A
(MAT/02)
6
B
(MAT/03)
6
C
(SECS-P/01)
6
C
(SECS-P/01)
6
E
(L-LIN/12)

3° Year

ModulesCreditsTAFSSD
6
C
(SECS-P/05)
Final exam
6
E
-
Modules Credits TAF SSD
Between the years: 1°- 2°- 3°
Further activities
6
F
-
Between the years: 1°- 2°- 3°

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




SPlacements in companies, public or private institutions and professional associations

Teaching code

4S00035

Coordinatore

Claudia Daffara

Credits

6

Scientific Disciplinary Sector (SSD)

FIS/01 - EXPERIMENTAL PHYSICS

Language

Italian

Period

Secondo semestre dal Mar 7, 2022 al Jun 10, 2022.

Learning outcomes

The course provides the fundamental knowledge of Electromagnetism and Optics in Classical Physics aimed at:
1) achieving a deep level of understanding of the physical principles and phenomena illustrated during the course, rigorous in the theoretical aspects,
2) making the student familiar with the mathematical formalism that allows the modeling of these phenomena,
3) providing methodologies for solving an applied problem in the field.

At the end of the course the student will have:
1) solid knowledge of the fundamental physical laws of the electrical and magnetic phenomena,
2) ability in modeling a physical phenomena by determining the validity of known relations,
3) ability in applying the theory to different framework for solving problems in rigorous way and with a scientific method.

Program

The course is based on theoretical lessons and exercises on the following topics:

- ELECTROSTATICS IN VACUUM
Experimental facts. Electric charge. Structure of matter. Coulomb law. Electric field E. Work of the electric F. Electrostatic potential energy and electrostatic potential. Flux of the field E and Gauss law. Discontinuities of the electric field. Differential equations of the electric field. Poisson and Laplace equations.
- ELECTROSTATICS IN CONDUCTORS
Conductors in equilibrium. Electrostatic induction. Electrostatic surface pressure. Cavity in a conductor. Electrostatic screening. Capacity. Capacitors.
Equilibrium in the electrostatic field. Uniqueness of the solution of the Laplace equation. Image method.
- ELECTROSTATICS IN DIELECTRICS
Electric dipole. Dipole in external field E. Energy of a dipole. Dipole approximation.
Electric field in materials. Uniform / non-uniform polarization. Linear dielectrics. Electrostatics equations in dielectrics.
- ELECTROSTATIC ENERGY
system of charges, system of conductors. Energy of a capacitor in vacuum and in dielectric media. Energy of the electric field. Energy of the point charge.
Motion of charges in electric field.
- ELECTRIC CURRENTS
Electric current, electromotive force. Classical theory of electrical conduction. Continuity equation for the charge.
Ohm law, joule effect, resistors. Kirchoff laws, elementary circuits. Charge / discharge of a capacitor.
- MAGNETOSTATICS IN VACUUM
Experimental facts. Magnetic field B, F of Lorentz, II law of Laplace. Motion of charges in magnetic field. Hall effect. Magnetic dipole. Dipole in external field B. Field B of stationary currents. Circulation of the magnetic field B and Ampère law. Discontinuities of the magnetic field. Vector potential. I law of Laplace. Field B of a moving charge. Solenoidal fields, concatenated flux. Differential equations of the magnetic field.
- TIME-VARYING FIELDS
Electromagnetic induction - experimental facts, flux law. Induced electric field and Faraday law. Lenz law. Energy balance. Mutual Inductance. Self-inductance, inductances. RL circuit and variable EMF.
- MAGNETIC ENERGY
Intrinsic energy of the current, system of stationary currents. Energy of the magnetic field. Energy of a magnetic dipole.
- MAXWELL EQUATIONS AND ELECTROMAGNETIC WAVES
Maxwell equations in integral and local form. Displacement current and Ampère-Maxwell law. Radiation of a circuit. Energy of the electromagnetic field. Energy flux and momentum of the e.m. field. Continuity equation. Potentials of the e.m. field.
Recalls on waves: transverse waves, longitudinal waves, harmonic wave, plane waves, spherical waves. D'Alembert wave equation. Maxwell equations in vacuum and the solution of e.m waves. Speed ​​of light, energy transported, intensity. Polarization. Electromagnetic spectrum. Principles of Optics.

Examination Methods

To pass the examination the students have to demonstrate:

- knowledge and understanding of the principles and the physical phenomena of classical electromagnetism
- to possess critical skills in the observation of electrical and magnetic phenomena and to know how to model these phenomena with a scientific method and adequate mathematical formalism
- to know how to apply the principles and the laws of physics to the different contexts for solving complex problems of electromagnetism.

Written examination (3 hours):
The exam includes
1) electromagnetism exercises (related to the exercises program carried out);
2) theory questions (related to the entire program).

Oral examination:
on the topics of the course program

Type D and Type F activities

Le attività formative di tipologia D o F comprendono gli insegnamenti impartiti presso l'Università di Verona o periodi di stage/tirocinio professionale.
Nella scelta delle attività di tipo D, gli studenti dovranno tener presente che in sede di approvazione si terrà conto della coerenza delle loro scelte con il progetto formativo del loro piano di studio e dell'adeguatezza delle motivazioni eventualmente fornite. Dal 1° dicembre 2021 al 27 febbraio 2022 e dal 2 maggio 2022 al 15 luglio 2022, tramite il presente modulo gli studenti possono richiedere l'inserimento di attività didattiche in TAF D ed F che non possono inserire autonomamente nel proprio piano di studi tramite la procedura on-line.

COMPETENZE LINGUISTICHE - dal 1° ottobre 2021 (Delibera del Consiglio della Scuola di Scienze e Ingegneria del 30 marzo 2021) per gli immatricolati dall'A.A. 2021/2022

  • Lingua inglese: vengono riconosciuti automaticamente 3 CFU per ogni livello di competenza superiore a quello richiesto dal corso di studio (se non già riconosciuto nel ciclo di studi precedente).
  • Altre lingue e italiano per stranieri: vengono riconosciuti automaticamente 3 CFU per ogni livello di competenza a partire da A2 (se non già riconosciuto nel ciclo di studi precedente).
Tali CFU saranno riconosciuti, fino ad un massimo di 6 CFU complessivi, di tipologia F se il piano didattico lo consente, oppure di tipologia D.
Ulteriori crediti a scelta per conoscenze linguistiche potranno essere riconosciuti solo se coerenti con il progetto formativo dello studente e se adeguatamente motivati.

COMPETENZE TRASVERSALI
Scopri i percorsi formativi promossi dal  Teaching and learning centre dell'Ateneo, destinati agli studenti iscritti ai corsi di laurea, volti alla promozione delle competenze trasversali:

Primo semestre From 10/4/21 To 1/28/22
years Modules TAF Teacher
1° 2° 3° Basis of general chemistry D Chiara Nardon

Career prospects


Module/Programme news

News for students

There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details.

Attendance

As stated in point 25 of the Teaching Regulations for the A.Y. 2021/2022, except for specific practical or lab activities, attendance is not mandatory. Regarding these activities, please see the web page of each module for information on the number of hours that must be attended on-site.
Please refer to the Crisis Unit's latest updates for the mode of teaching.

Graduation

Attachments

List of theses and work experience proposals

theses proposals Research area
Formule di rappresentazione per gradienti generalizzati Mathematics - Analysis
Formule di rappresentazione per gradienti generalizzati Mathematics - Mathematics
Mathematics Bachelor and Master thesis titles Various topics
Stage Research area
Internship proposals for students in mathematics Various topics

Gestione carriere


Further services

I servizi e le attività di orientamento sono pensati per fornire alle future matricole gli strumenti e le informazioni che consentano loro di compiere una scelta consapevole del corso di studi universitario.