Studying at the University of Verona
Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.
Study Plan
This information is intended exclusively for students already enrolled in this course.If you are a new student interested in enrolling, you can find information about the course of study on the course page:
Laurea in Matematica applicata - Enrollment from 2025/2026The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.
1° Year
Modules | Credits | TAF | SSD |
---|
2° Year activated in the A.Y. 2020/2021
Modules | Credits | TAF | SSD |
---|
3° Year activated in the A.Y. 2021/2022
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Legend | Type of training activity (TTA)
TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.
Econometrics (2021/2022)
Teaching code
4S01951
Teacher
Coordinator
Credits
6
Language
Italian
Scientific Disciplinary Sector (SSD)
SECS-P/05 - ECONOMETRICS
Period
Primo semestre dal Oct 4, 2021 al Jan 28, 2022.
Learning outcomes
Statistic tools and economic theory will be applied in order to provide students with capabilities to understand and perform empirical analysis of economic phenomena. Empirical problems and applications will be discussed during the course to provide students with the tools needed for the analysis of economic data.
Program
1. INTRODUCTION (Stock-Watson, ch.2-3)
1.1. What is econometrics?
1.2. Probability
1.3. Statistics
2. REGRESSION ANALYSIS (Stock-Watson, ch.4-9)
2.1. Linear regressione with a single regressor and hypothesis testing
2.2. Linear regression with multiple regressions and hypothesis testing
2.3. Diagnostics of the regression model: specification, heteroskedasticity, autocorrelation
3. EXTENSIONS (Stock-Watson, ch.11-12)
3.1. Regression with instrumental variables
3.2. Regression with binary dependent variable
Bibliography
Examination Methods
The exam is made of one written essay and one individual homework; the final grade is given by the average of the grades in the essay and the homework, with 75% and 25% weights respectively. In order to pass the exam, it is necessary to obtain a grade not below 18/30 in the written essay.
The homework can be of two types (Homework 1 and Homework 2). Each student is free to choose either Homework 1 or Homework 2 but must deliver one of them. Once the deadline for delivery of Homework 2 has expired, it is possible to deliver Homework 1 only. The homework grade remains valid throughout the academic year.
Homework 1
The homework aims to develop critical skills with respect to empirical applications. Each student is free to choose one article from www.lavoce.info, www.voxeu.org/, www.ilsole24ore.com or other webiste, provided that it discusses an economic topic and makes use of data.
The homework consists in an essay of max. 2000 words, to be delivered to the address diego.lubian[at]univr.it within the day in which the exam is scheduled. The homework will pass through an antiplagiarism analysis by means of the Compilation software; it is advisable to make a personal preliminary analysis before submitting the homework.
The essay must be divided in sections in such a way to contain a) a reference to the chosen article (title, authors, link), b) a summary of the article, briefly describing its motivation, goal, methodology and results, and c) a critical comment on the methodology, also proposing alternative analyses and possible future developments. The essay must also report the word count.
Homework 2
The homework aims to develop analytical skills through personal data analysis in Gretl. Any student interested in this homework must write to the address diego.lubian[at]univr.it communicating name, surname and ID number. He or she will then receive a number, corresponding to the dataset to be used. The text of the homework will be made available at the end of the lectures; the solution must be delivered by email within the following three days.