Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

Academic calendar

The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.

Academic calendar

Course calendar

The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..

Definition of lesson periods
Period From To
I semestre Oct 1, 2019 Jan 31, 2020
II semestre Mar 2, 2020 Jun 12, 2020
Exam sessions
Session From To
Sessione invernale d'esame Feb 3, 2020 Feb 28, 2020
Sessione estiva d'esame Jun 15, 2020 Jul 31, 2020
Sessione autunnale d'esame Sep 1, 2020 Sep 30, 2020
Degree sessions
Session From To
Sessione estiva di laurea Jul 22, 2020 Jul 22, 2020
Sessione autunnale di laurea Oct 14, 2020 Oct 14, 2020
Sessione autunnale di laurea solo triennale Dec 10, 2020 Dec 10, 2020
Sessione invernale di laurea Mar 16, 2021 Mar 16, 2021
Period From To
Festa di Ognissanti Nov 1, 2019 Nov 1, 2019
Festa dell'Immacolata Dec 8, 2019 Dec 8, 2019
Vacanze di Natale Dec 23, 2019 Jan 6, 2020
Vacanze di Pasqua Apr 10, 2020 Apr 14, 2020
Festa della Liberazione Apr 25, 2020 Apr 25, 2020
Festa del lavoro May 1, 2020 May 1, 2020
Festa del Santo Patrono May 21, 2020 May 21, 2020
Festa della Repubblica Jun 2, 2020 Jun 2, 2020
Vacanze estive Aug 10, 2020 Aug 23, 2020

Exam calendar

Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.

Exam calendar

Should you have any doubts or questions, please check the Enrolment FAQs

Academic staff


Albi Giacomo +39 045 802 7913

Angeleri Lidia 045 802 7911

Baldo Sisto 045 802 7935

Bos Leonard Peter +39 045 802 7987

Caliari Marco +39 045 802 7904

Canevari Giacomo +39 045 8027979

Chignola Roberto 045 802 7953

Collet Francesca

Cubico Serena 045 802 8132

Daffara Claudia +39 045 802 7942

Dai Pra Paolo +39 0458027093

Daldosso Nicola +39 045 8027076 - 7828 (laboratorio)

Delledonne Massimo 045 802 7962; Lab: 045 802 7058

De Sinopoli Francesco 045 842 5450

Dipasquale Federico Luigi

Enrichi Francesco +390458027051

Fioroni Tamara 0458028489

Gnoatto Alessandro 045 802 8537

Gonzato Guido 045 802 8303

Gregorio Enrico 045 802 7937

Laking Rosanna Davison

Lubian Diego 045 802 8419

Mantese Francesca +39 045 802 7978

Mantovani Matteo 045-802(7814)

Mattiolo Davide

Mazzi Giulio

Mazzuoccolo Giuseppe +39 0458027838

Nardon Chiara

Orlandi Giandomenico

giandomenico.orlandi at 045 802 7986

Pianezzi Daniela

Raffaele Alice

Rizzi Romeo +39 045 8027088

Segala Roberto 045 802 7997

Solitro Ugo +39 045 802 7977

Vincenzi Elia

Zivcovich Franco

Zuccher Simone

Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University. Please select your Study Plan based on your enrolment year.

Modules Credits TAF SSD
Between the years: 1°- 2°- 3°
Between the years: 1°- 2°- 3°
Other activitites

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.

S Placements in companies, public or private institutions and professional associations

Teaching code



Simone Zuccher





Scientific Disciplinary Sector (SSD)



Secondo semestre dal Mar 7, 2022 al Jun 10, 2022.

Learning outcomes

Derivation of the fluid-dynamic equations from conservation laws in Physics; discussion on the rheological structure of fluids and the model for Newtonian fluids; different flows and simplifications of the governing equations; Bernoulli theorem in all forms and for all cases; some exact solutions; vorticity dynamics; laminar boundary layer; stability and transition; turbulence; hyperbolic equations in fluid dynamics. Numerical resolution in Matlab / Octave of some typical problems of fluid dynamics.


The teaching prerequisites are: differential and integral calculus in one and two variables, numerical methods for the solution of equations and systems of nonlinear equations, basic numerical methods for differential equations, such as explicit Euler and the finite difference method.

1. Introduction to fluids: definitions, continuous hypothesis and properties of fluids; differences between fluid, flux, flow; some kinematics (stream-lines, trajectories, streak-lines), forces and stresses (Cauchy Theorem and symmetry of the stress tensor), the constitutive relation for Newtonian fluids (viscous stress tensor).

2. Governing equations: Eulerian vs Lagrangian approach; control volume and material volume, conservation of mass in a fixed volume, time derivative of the integral over a variable domain, Reynolds Theorem (scalar and vectorial forms), conservation of mass in a material volume, from conservation laws to the Navier-Stokes equations, the complete Navier-Stokes equations (in conservative, tensorial form), substantial derivative, conservative vs convective form of the equations, alternative forms of the energy equation, dimensionless equations, initial and boundary conditions.

3. Particular cases of the governing equations: time dependence, effect of viscosity, thermal conduction, entropy, compressibility, barotropic flows, incompressible flows, ideal flows, Euler equations irrotational flows, barotropic and non-viscous flows: Crocco's form, Bernoulli theorem in all cases and forms.

4. Some exact solutions: incompressible and parallel flows, infinite channel flow, Couette and Poiseuille flows, flow in a circular pipe, Hagen-Poiseuille solution.

5. Vorticity dynamics: preliminary definitions, vorticity equation in the general case, special cases (constant density, non-viscous flow with conservative external field), Kelvin's theorem, Helmholtz's theorems and their geometrical meaning.

6. Laminar boundary layer: Prandtl theory, boundary layer past a flat plate, derivation of Blasius' equation (similar solutions), boundary-layer thickness, drag due to skin-friction, characteristics of a boundary layer (displacement thickness, momentum thickness, shape factor), integral von Kàrmàn equation, numerical solution of the 2D steady equations for the boundary layer past a flat plate:
(a) parabolic PDE + BC (Prandtl's equations): marching in space
(b) ODE + BC (Blasius' equation): nonlinear boundary value problem
(c) comparison between the two methods.

7. Stability and transition: flow in a pipe - Reynolds' experiment, transition in a laminar boundary layer, linear stability for parallel flows (Orr-Sommerfeld equation),
Squire's theorem, non-viscous stability (Rayleigh's criteria), viscous stability, linear stability curves.

8. Turbulence: phenomenological characteristics, turbulent scales, energy cascade, Kolmogorov's theory, DNS (Direct numerical simulation), RANS (Reynolds-Averaged-Navier-Stokes equations), the problem of closure for the RANS, closure models, Boussinesq hypothesis for the tutbulent viscosity (models of order 0, 1 and 2), LES (Large Eddy Simulation).

9. Hyperbolic differential equations in fluid dynamics: main characteristics and comparison with parabolic and elliptic equations, conservation laws, transport equation, characteristic lines, Riemann problem, Burgers' equation, weak solutions, shock waves, rarefaction waves, comparison between conservative and non-conservative numerical methods, method of characteristics, usage of an applet for the visualization of shock and rarefaction waves, hyperbolic linear and non-linear systems, genuine nonlinearity, linear degeneration, contact discontinuity, solution of the Riemann for the Euler equations.

Examination Methods

The aim of the exam is to ensure that the student is able to produce and recognize rigorous demonstrations, mathematically formalize natural language problems and discuss mathematical models for fluid dynamics analyzing their limits and applicability. The exam consists of an oral interview on the course program and the discussion on the numerical exercises in Matlab/Octave assigned during the course. The discussion on the latter aims to ensure that the student is able to use computer tools, programming languages, and specific software.

Type D and Type F activities

I semestre From 10/1/19 To 1/31/20
years Modules TAF Teacher
1° 2° 3° Python programming language D Maurizio Boscaini (Coordinatore)
1° 2° 3° SageMath F Zsuzsanna Liptak (Coordinatore)
1° 2° 3° History of Modern Physics 2 D Francesca Monti (Coordinatore)
1° 2° 3° History and Didactics of Geology D Guido Gonzato (Coordinatore)
II semestre From 3/2/20 To 6/12/20
years Modules TAF Teacher
1° 2° 3° C Programming Language D Sara Migliorini (Coordinatore)
1° 2° 3° C++ Programming Language D Federico Busato (Coordinatore)
1° 2° 3° LaTeX Language D Enrico Gregorio (Coordinatore)
List of courses with unassigned period
years Modules TAF Teacher
1° 2° 3° Corso Europrogettazione D Not yet assigned
1° 2° 3° Corso online ARPM bootcamp F Not yet assigned
1° 2° 3° ECMI modelling week F Not yet assigned
1° 2° 3° ESA Summer of code in space (SOCIS) F Not yet assigned
1° 2° 3° Google summer of code (GSOC) F Not yet assigned

Career prospects

Module/Programme news

News for students

There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details.


For schedules, administrative requirements and notices on graduation sessions, please refer to the Graduation Sessions - Science and Engineering service.


Title Info File
Doc_Univr_pdf 1. Come scrivere una tesi 31 KB, 29/07/21 
Doc_Univr_pdf 2. How to write a thesis 31 KB, 29/07/21 
Doc_Univr_pdf 5. Regolamento tesi (valido da luglio 2022) 171 KB, 17/02/22 

List of theses and work experience proposals

theses proposals Research area
Formule di rappresentazione per gradienti generalizzati Mathematics - Analysis
Formule di rappresentazione per gradienti generalizzati Mathematics - Mathematics
Proposte Tesi A. Gnoatto Various topics
Mathematics Bachelor and Master thesis titles Various topics
Stage Research area
Internship proposals for students in mathematics Various topics


As stated in point 25 of the Teaching Regulations for the A.Y. 2021/2022, except for specific practical or lab activities, attendance is not mandatory. Regarding these activities, please see the web page of each module for information on the number of hours that must be attended on-site.
Please refer to the Crisis Unit's latest updates for the mode of teaching.

Career management

Area riservata studenti