Studying at the University of Verona
Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.
Academic calendar
The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.
Course calendar
The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..
Period | From | To |
---|---|---|
I semestre | Oct 1, 2020 | Jan 29, 2021 |
II semestre | Mar 1, 2021 | Jun 11, 2021 |
Session | From | To |
---|---|---|
Sessione invernale d'esame | Feb 1, 2021 | Feb 26, 2021 |
Sessione estiva d'esame | Jun 14, 2021 | Jul 30, 2021 |
Sessione autunnale d'esame | Sep 1, 2021 | Sep 30, 2021 |
Session | From | To |
---|---|---|
Sessione Estiva | Jul 19, 2021 | Jul 19, 2021 |
Sessione Autunnale | Oct 19, 2021 | Oct 19, 2021 |
Sessione Autunnale Dicembre | Dec 7, 2021 | Dec 7, 2021 |
Sessione Invernale | Mar 17, 2022 | Mar 17, 2022 |
Period | From | To |
---|---|---|
Festa dell'Immacolata | Dec 8, 2020 | Dec 8, 2020 |
Vacanze Natalizie | Dec 24, 2020 | Jan 3, 2021 |
Epifania | Jan 6, 2021 | Jan 6, 2021 |
Vacanze Pasquali | Apr 2, 2021 | Apr 5, 2021 |
Santo Patrono | May 21, 2021 | May 21, 2021 |
Festa della Repubblica | Jun 2, 2021 | Jun 2, 2021 |
Exam calendar
Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.
Academic staff
Study Plan
The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.
1° Year
Modules | Credits | TAF | SSD |
---|
Computer Architecture
2° Year activated in the A.Y. 2021/2022
Modules | Credits | TAF | SSD |
---|
3° Year activated in the A.Y. 2022/2023
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Computer Architecture
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Legend | Type of training activity (TTA)
TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.
System theory (2021/2022)
Teaching code
4S02785
Credits
6
Language
Italian
Scientific Disciplinary Sector (SSD)
ING-INF/04 - SYSTEMS AND CONTROL ENGINEERING
The teaching is organized as follows:
Laboratorio
Teoria
Learning outcomes
The course objective is to give students the mathematical tools required for the analysis and modeling of linear, time-invariant (LTI) systems, and of the input/output signals to an LTI system. The model will allow students to study the main system properties and to address the general concepts of controller and filters to perform simple control actions on the dynamic system and filter operations on the input/output signals. The mathematical tools will be based on analysis methods in the time domain, as well as of the complex variables s, z and the frequency of the input/output signals. Analysis and synthesis will be carried out both for continuous and discrete time systems and signals. The theoretical concepts acquired during the course will be consolidated with exercise sessions addressing the solution of basic problems with analytical approach and with numerical simulations.
Program
1. Review: complex numbers, functions of complex variables, series of complex powers, convergence, Euler's formula
2. Distributions: impulse, step, ramp. Sampling and reproducibility. Sinusoidal exponential functions, time translation. Discrete signals
3. Continuous time systems. Causal LTI systems. Stability.
4. Characteristic equation of a system, elementary modes, convergence.
5. Convolution, impulsive response, forced response, BIBO stability, asymptotic stability
6. Frequency response
7. The Laplace transform. Convergence region. Properties
8. Free response and forced response in the complex plane, transfer function, zeros and poles, stability.
9. The Laplace's antitrasform, poles, residues.
10. The Fourier series for periodic signals. Frequency, pulsation, linear combination of periodic signals, synthesis equation, analysis equation. The energy and power of a signal, the discrete spectrum.
11. The Fourier transform. Conditions of existence, discontinuities.
12. Convolution and modulation. Spectrum.
13. Fourier trasform of the ideal sampling train, replication and sampling, reconstruction filters, Nyquist frequency, Shannon forumula.
14. Bode diagrams
15. Block diagrams
16. Discrete-time LTI systems. ARMA model. Impulsive response, forced response.
16. z trasform. Properties
17. The antitransformed z. Frequency response. Discrete Fourier transform
The students can integrate the reference books ('Segnali e Sistemi' by M.E. Valcher and 'Regolazione Automatica' by Di Stefano et al. for the laboratory part) with the free text at the link:
https://ptolemy.berkeley.edu/books/leevaraiya/
On moodle e-learning website there is the complete material of both theory and exercises. There will be also a laboratory part that consists in Matlab-Simulink implementation.
Office hours: after class
Examination Methods
The exam is divided in a theory quiz and a written part. Only those who pass the theory quiz can access the written exam.
Type D and Type F activities
Le attività formative in ambito D o F comprendono gli insegnamenti impartiti presso l'Università di Verona o periodi di stage/tirocinio professionale.
Nella scelta delle attività di tipo D, gli studenti dovranno tener presente che in sede di approvazione si terrà conto della coerenza delle loro scelte con il progetto formativo del loro piano di studio e dell'adeguatezza delle motivazioni eventualmente fornite.
years | Modules | TAF | Teacher |
---|---|---|---|
3° | Control theory | D |
Riccardo Muradore
(Coordinator)
|
3° | Biomedical Data and Signal Processing | D |
Silvia Francesca Storti
(Coordinator)
|
3° | Matlab-Simulink programming | D |
Bogdan Mihai Maris
(Coordinator)
|
years | Modules | TAF | Teacher |
---|---|---|---|
3° | Introduction to 3D printing | D |
Franco Fummi
(Coordinator)
|
3° | Python programming language | D |
Vittoria Cozza
(Coordinator)
|
3° | HW components design on FPGA | D |
Franco Fummi
(Coordinator)
|
3° | Rapid prototyping on Arduino | D |
Franco Fummi
(Coordinator)
|
3° | Protection of intangible assets (SW and invention)between industrial law and copyright | D |
Roberto Giacobazzi
(Coordinator)
|
years | Modules | TAF | Teacher | |
---|---|---|---|---|
1° | Subject requirements: mathematics | D |
Rossana Capuani
|
|
3° | The fashion lab (1 ECTS) | D |
Maria Caterina Baruffi
(Coordinator)
|
|
3° | LaTeX Language | D |
Enrico Gregorio
(Coordinator)
|
Career prospects
Module/Programme news
News for students
There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details: only in this way will you be able to receive notification of all the notices from your teachers and your secretariat via email and also via the Univr app.
Graduation
List of thesis proposals
theses proposals | Research area |
---|---|
Analisi e percezione dei segnali biometrici per l'interazione con robot | AI, Robotics & Automatic Control - AI, Robotics & Automatic Control |
Integrazione del simulatore del robot Nao con Oculus Rift | AI, Robotics & Automatic Control - AI, Robotics & Automatic Control |
Domain Adaptation | Computer Science and Informatics: Informatics and information systems, computer science, scientific computing, intelligent systems - Computer graphics, computer vision, multi media, computer games |
Domain Adaptation | Computer Science and Informatics: Informatics and information systems, computer science, scientific computing, intelligent systems - Machine learning, statistical data processing and applications using signal processing (e.g. speech, image, video) |
BS or MS theses in automated reasoning | Computing Methodologies - ARTIFICIAL INTELLIGENCE |
Domain Adaptation | Computing Methodologies - IMAGE PROCESSING AND COMPUTER VISION |
Domain Adaptation | Computing methodologies - Machine learning |
Dati geografici | Information Systems - INFORMATION SYSTEMS APPLICATIONS |
Analisi e percezione dei segnali biometrici per l'interazione con robot | Robotics - Robotics |
Integrazione del simulatore del robot Nao con Oculus Rift | Robotics - Robotics |
BS or MS theses in automated reasoning | Theory of computation - Logic |
BS or MS theses in automated reasoning | Theory of computation - Semantics and reasoning |
Proposte di tesi/collaborazione/stage in Intelligenza Artificiale Applicata | Various topics |
Proposte di Tesi/Stage/Progetto nell'ambito dell'analisi dei dati | Various topics |
Tutoring faculty members
Attendance modes and venues
As stated in the Teaching Regulations, attendance at the course of study is not mandatory.
Part-time enrolment is permitted. Find out more on the Part-time enrolment possibilities page.
The course's teaching activities take place in the Science and Engineering area, which consists of the buildings of Ca‘ Vignal 1, Ca’ Vignal 2, Ca' Vignal 3 and Piramide, located in the Borgo Roma campus.
Lectures are held in the classrooms of Ca‘ Vignal 1, Ca’ Vignal 2 and Ca' Vignal 3, while practical exercises take place in the teaching laboratories dedicated to the various activities.