Studying at the University of Verona
Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.
Academic calendar
The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.
Course calendar
The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..
Period | From | To |
---|---|---|
I semestre | Oct 1, 2020 | Jan 29, 2021 |
II semestre | Mar 1, 2021 | Jun 11, 2021 |
Session | From | To |
---|---|---|
Sessione invernale d'esame | Feb 1, 2021 | Feb 26, 2021 |
Sessione estiva d'esame | Jun 14, 2021 | Jul 30, 2021 |
Sessione autunnale d'esame | Sep 1, 2021 | Sep 30, 2021 |
Session | From | To |
---|---|---|
Sessione Estiva | Jul 15, 2021 | Jul 15, 2021 |
Sessione Autunnale | Oct 15, 2021 | Oct 15, 2021 |
Sessione Invernale | Mar 15, 2022 | Mar 15, 2022 |
Period | From | To |
---|---|---|
Festa dell'Immacolata | Dec 8, 2020 | Dec 8, 2020 |
Vacanze Natalizie | Dec 24, 2020 | Jan 3, 2021 |
Epifania | Jan 6, 2021 | Jan 6, 2021 |
Vacanze Pasquali | Apr 2, 2021 | Apr 5, 2021 |
Festa del Santo Patrono | May 21, 2021 | May 21, 2021 |
Exam calendar
Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.
Should you have any doubts or questions, please check the Enrolment FAQs
Academic staff
Study Plan
The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University. Please select your Study Plan based on your enrolment year.
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
1° Year
Modules | Credits | TAF | SSD |
---|
2° Year
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Legend | Type of training activity (TTA)
TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.
Architectures and systems for biological data processing (2021/2022)
Teaching code
4S004555
Credits
6
Also offered in courses
Language
English
Scientific Disciplinary Sector (SSD)
ING-INF/05 - INFORMATION PROCESSING SYSTEMS
The teaching is organized as follows:
Teoria
Laboratorio
Learning outcomes
This course aims at providing theoretical and practical knowledge about programming and analysis of advanced computational architectures, with emphasis on multiprocessor and GPU platforms. At the end of the course the student will have to demonstrate the ability to apply the knowledge necessary to: identify techniques for parallel programming, also in a research context, through analysis of application efficiency and by considering both functional and non-functional design constraints (correctness, performance, energy consumption). This knowledge will allow the student to be able to analyze performance and to perform code profiling, by identifying critical zone and the corresponding optimizations by considering the architectural characteristics of the platform. At the end of the course the student will be able to compare parallel patterns and to select the best one by considering the use case; by defining the structure of the optimized code, demonstrate the ability to identify the proper architectural choices, by considering the target application and platform contexts. During the definition of the optimized code structure, the student will have the ability to continue the study autonomously in the field of the parallel programming languages and of the Software development for parallel embedded platforms.
Program
Theory:
- Parallel architectures
- Parallel programming models
- Performance measurement
- Perspective on Parallel Programming
- Designing parallel programs
- GPUs and CUDA:
overview , parallel programming model, threads
memory hierarchy/model
performance considerations
optimizations
- Graph algorithms on GPUs
data representations: Adj. matriX/lists, edge lists
Parallel algorithms for graph traversal (BFS)
Parallel algorithms for graph analysis (SSSP, APSP)
Parallel algorithms for graphs: load balancing and memory accesses: issues and management
Lab:
- OpenMP
- MPI
- CUDA
Examination Methods
To pass the exam, the student has to demonstrate:
- he/she has understood the principles related to the parallel programming
- he/she is able to describe the concepts in a clear and exhaustive way without digressions
- he/she is able to apply the acquired knowledge to solve application scenarios described by means of exercises, questions and projects.
The exam consists of a written test, which contains questions with multiple answers, questions with open answers, and exercises related both the theoretical and lab modules. The student can elaborate a project assigned by the teacher for a bonus (up to +5 points).
Type D and Type F activities
years | Modules | TAF | Teacher |
---|---|---|---|
1° 2° | Matlab-Simulink programming | D |
Bogdan Mihai Maris
(Coordinatore)
|
years | Modules | TAF | Teacher |
---|---|---|---|
1° 2° | Introduction to 3D printing | D |
Franco Fummi
(Coordinatore)
|
1° 2° | Python programming language | D |
Vittoria Cozza
(Coordinatore)
|
1° 2° | HW components design on FPGA | D |
Franco Fummi
(Coordinatore)
|
1° 2° | Rapid prototyping on Arduino | D |
Franco Fummi
(Coordinatore)
|
1° 2° | Protection of intangible assets (SW and invention)between industrial law and copyright | D |
Roberto Giacobazzi
(Coordinatore)
|
years | Modules | TAF | Teacher |
---|---|---|---|
1° 2° | The fashion lab (1 ECTS) | D |
Maria Caterina Baruffi
(Coordinatore)
|
1° 2° | The course provides an introduction to blockchain technology. It focuses on the technology behind Bitcoin, Ethereum, Tendermint and Hotmoka. | D |
Nicola Fausto Spoto
(Coordinatore)
|
Career prospects
Module/Programme news
News for students
There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details.
Further services
I servizi e le attività di orientamento sono pensati per fornire alle future matricole gli strumenti e le informazioni che consentano loro di compiere una scelta consapevole del corso di studi universitario.
Graduation
Attendance
As stated in point 25 of the Teaching Regulations for the A.Y. 2021/2022, attendance at the course of study is not mandatory.Please refer to the Crisis Unit's latest updates for the mode of teaching.