Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

Academic calendar

The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.

Academic calendar

Course calendar

The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..

Definition of lesson periods
Period From To
Primo semestre Oct 4, 2021 Jan 28, 2022
Secondo semestre Mar 7, 2022 Jun 10, 2022
Exam sessions
Session From To
Sessione invernale d'esame Jan 31, 2022 Mar 4, 2022
Sessione estiva d'esame Jun 13, 2022 Jul 29, 2022
Sessione autunnale d'esame Sep 1, 2022 Sep 30, 2022
Degree sessions
Session From To
Sessione di laurea estiva Jul 20, 2022 Jul 20, 2022
Sessione di laurea autunnale Oct 19, 2022 Oct 19, 2022
Sessione invernale Mar 15, 2023 Mar 15, 2023
Holidays
Period From To
Festa di Tutti i Santi Nov 1, 2021 Nov 1, 2021
Festa dell'Immacolata Dec 8, 2021 Dec 8, 2021
Festività natalizie Dec 24, 2021 Jan 2, 2022
Vacanze Pasquali Apr 15, 2022 Apr 19, 2022
FESTA DEL LAVORO May 1, 2022 May 1, 2022
Santo Patrono May 21, 2022 May 21, 2022
Festa della Repubblica Jun 2, 2022 Jun 2, 2022
Chiusura estiva Aug 15, 2022 Aug 20, 2022

Exam calendar

Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.

Exam calendar

Should you have any doubts or questions, please check the Enrolment FAQs

Academic staff

A B C D F G I M O P Q R S T V Z

Albi Giacomo

giacomo.albi@univr.it +39 045 802 7913

Badino Massimiliano

massimiliano.badino@univr.it +39 045 802 8459

Bazzani Claudia

claudia.bazzani@univr.it 0458028734

Begalli Diego

diego.begalli@univr.it +39 045 8028491

Boscolo Galazzo Ilaria

ilaria.boscologalazzo@univr.it +39 045 8127804

Carra Damiano

damiano.carra@univr.it +39 045 802 7059

Carradore Marco

marco.carradore@univr.it

Castellini Alberto

alberto.castellini@univr.it +39 045 802 7908

Ceccato Mariano

mariano.ceccato@univr.it

Chiarini Andrea

andrea.chiarini@univr.it 045 802 8223

Cobelli Nicola

nicola.cobelli@univr.it 0458028295

Collet Francesca

francesca.collet@univr.it

Confente Ilenia

ilenia.confente@univr.it 045 802 8174

Dai Pra Paolo

paolo.daipra@univr.it +39 0458027093

Dalla Preda Mila

mila.dallapreda@univr.it

D'Asaro Fabio Aurelio

fabioaurelio.dasaro@univr.it 0458028431

Di Persio Luca

luca.dipersio@univr.it +39 045 802 7968

Farinelli Alessandro

alessandro.farinelli@univr.it +39 045 802 7842

Gaudenzi Barbara

barbara.gaudenzi@univr.it 045 802 8623

Giachetti Andrea

andrea.giachetti@univr.it +39 045 8027998

Guerra Giorgia

giorgia.guerra@univr.it

Marastoni Niccolo'

niccolo.marastoni@univr.it

Mola Lapo

lapo.mola@univr.it 045/8028565

Owusu Abigail

abigail.owusu@univr.it

Paci Federica Maria Francesca

federicamariafrancesca.paci@univr.it +39 045 802 7909

Pelgreffi Igor

igor.pelgreffi@univr.it

Quintarelli Elisa

elisa.quintarelli@univr.it +39 045 802 7852

Raffaele Alice

alice.raffaele@univr.it

Setti Francesco

francesco.setti@univr.it +39 045 802 7804

Troiano Stefano

stefano.troiano@univr.it +39 045 8028817

Vadala' Rosa Maria

rosamaria.vadala@univr.it

Zardini Alessandro

alessandro.zardini@univr.it 045 802 8565

Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University. Please select your Study Plan based on your enrolment year.

ModulesCreditsTAFSSD
Training
6
F
-
Final exam
22
E
-

1° Year

ModulesCreditsTAFSSD

2° Year

ModulesCreditsTAFSSD
Training
6
F
-
Final exam
22
E
-
Modules Credits TAF SSD
Between the years: 1°- 2°1 module among the following (1st year: Big Data epistemology and Social research; 2nd year: Cybercrime, Data protection in business organizations, Comparative and Transnational Law & Technology)
6
C
IUS/17
Between the years: 1°- 2°2 courses among the following (1st year: Business analytics, Digital Marketing and market research; 2nd year: Logistics, Operations & Supply Chain, Digital transformation and IT change, Statistical methods for Business intelligence)
Between the years: 1°- 2°2 courses among the following (1st year: Complex systems and social physics, Discrete Optimization and Decision Making, 2nd year: Statistical models for Data Science, Continuous Optimization for Data Science, Network science and econophysics, Marketing research for agrifood and natural resources)
Between the years: 1°- 2°2 courses among the following (1st year: Data Visualisation, Data Security & Privacy, Statistical learning, Mining Massive Dataset, 2nd year: Machine Learning for Data Science)
Between the years: 1°- 2°

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




S Placements in companies, public or private institutions and professional associations

Teaching code

4S009064

Credits

12

Coordinatore

Elisa Quintarelli

Language

English en

Scientific Disciplinary Sector (SSD)

INF/01 - INFORMATICS

The teaching is organized as follows:

Programming

Credits

6

Period

Primo semestre

Academic staff

Niccolo' Marastoni

Database

Credits

6

Period

Primo semestre, Secondo semestre

Academic staff

Elisa Quintarelli

Learning outcomes

The course is structured as follows [Programming Module] The purpose of the module is to provide skills and knowledge in programming in Python and R, giving the basic concepts of algorithm with particular reference to the use of the Python language (syntax, data structures, data import / export in Python, data visualization in Python) and its applications in data science [Database form] The course aims to provide the skills necessary for the design of data according to the requirements with reference to different application contexts and within the production process of software systems; for the management and effective and efficient use of data and for the study of a system for the management of relational databases in order to create, manage and query databases. At the end of the course the student has to show to have acquired the following skills: ● ability to develop Python code to solve concrete examples ● ability to evaluate algorithms in terms of complexity in time and space ● knowledge of the syntax and semantics of the language used ● knowledge of the bases of: database management; architecture and functionality of a database management system; concepts of physical independence, logical independence, persistence, competition, reliability, query and updating of a database; advantages of a database management system compared to an operating system file system ● ability to conceptually design databases, e.g., conceptual models for data design; the Entity-Relationship (E-R) model; elements of the E-R model: entities, attributes, relationships, generalization hierarchies and cardinality constraints; the conceptual scheme of a database ● knowledge of the basics of the logical design of a database: data models for database management systems; the relational model; relationship definitions, integrity constraints and relationship scheme; the logical scheme of a database; rules for the translation of conceptual schemes into relationship schemes ● understanding of the mechanisms of interaction with a database: introduction to languages for the definition, modification and query of a database; relational algebra; optimization of algebra expressions; the SQL language; the selection construct (Select-From-Where), nested queries, sorting and grouping of data in SQL; the concept of sight.

Bibliography

Visualizza la bibliografia con Leganto, strumento che il Sistema Bibliotecario mette a disposizione per recuperare i testi in programma d'esame in modo semplice e innovativo.

Type D and Type F activities

Le attività formative di tipologia D sono a scelta dello studente, quelle di tipologia F sono ulteriori conoscenze utili all’inserimento nel mondo del lavoro (tirocini, competenze trasversali, project works, ecc.). In base al Regolamento Didattico del Corso, alcune attività possono essere scelte e inserite autonomamente a libretto, altre devono essere approvate da apposita commissione per verificarne la coerenza con il piano di studio. Le attività formative di tipologia D o F possono essere ricoperte dalle seguenti attività.

1. Insegnamenti impartiti presso l'Università di Verona

Comprendono gli insegnamenti sotto riportati e/o nel Catalogo degli insegnamenti (che può essere filtrato anche per lingua di erogazione tramite la Ricerca avanzata).

Modalità di inserimento a libretto: se l'insegnamento è compreso tra quelli sottoelencati, lo studente può inserirlo autonomamente durante il periodo in cui il piano di studi è aperto; in caso contrario, lo studente deve fare richiesta alla Segreteria, inviando a carriere.scienze@ateneo.univr.it il modulo nel periodo indicato.

2. Attestato o equipollenza linguistica CLA

Oltre a quelle richieste dal piano di studi, per gli immatricolati dall'A.A. 2021/2022 vengono riconosciute:

  • Lingua inglese: vengono riconosciuti 3 CFU per ogni livello di competenza superiore a quello richiesto dal corso di studio (se non già riconosciuto nel ciclo di studi precedente).
  • Altre lingue e italiano per stranieri: vengono riconosciuti 3 CFU per ogni livello di competenza a partire da A2 (se non già riconosciuto nel ciclo di studi precedente).

Tali cfu saranno riconosciuti, fino ad un massimo di 6 cfu complessivi, di tipologia F se il piano didattico lo consente, oppure di tipologia D. Ulteriori crediti a scelta per conoscenze linguistiche potranno essere riconosciuti solo se coerenti con il progetto formativo dello studente e se adeguatamente motivati.

Gli immatricolati fino all'A.A. 2020/2021 devono consultare le informazioni che si trovano qui.

Modalità di inserimento a librettorichiedere l’attestato o l'equipollenza al CLA e inviarlo alla Segreteria Studenti - Carriere per l’inserimento dell’esame in carriera, tramite mail: carriere.scienze@ateneo.univr.it

3. Competenze trasversali

Scopri i percorsi formativi promossi dal TALC - Teaching and learning center dell'Ateneo, destinati agli studenti regolarmente iscritti all'anno accademico di erogazione del corso https://talc.univr.it/it/competenze-trasversali

Modalità di inserimento a libretto: non è previsto l'inserimento dell'insegnamento nel piano di studi. Solo in seguito all'ottenimento dell'Open Badge verranno automaticamente convalidati i CFU a libretto. La registrazione dei CFU in carriera non è istantanea, ma ci saranno da attendere dei tempi tecnici.  

4. Periodo di stage/tirocinio

Oltre ai CFU previsti dal piano di studi (verificare attentamente quanto indicato sul Regolamento Didattico): qui informazioni su come attivare lo stage. 

Verificare nel regolamento quali attività possono essere di tipologia D e quali di tipologia F.

Insegnamenti e altre attività che si possono inserire autonomamente a libretto

 

Modules not yet included

Career prospects


Module/Programme news

News for students

There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details.

Graduation

For schedules, administrative requirements and notices on graduation sessions, please refer to the Graduation Sessions - Science and Engineering service.

Attachments

Title Info File
Doc_Univr_pdf Regolamento esame finale | Final exam regulation 387 KB, 27/04/22 

List of theses and work experience proposals

theses proposals Research area
Domain Adaptation Computer Science and Informatics: Informatics and information systems, computer science, scientific computing, intelligent systems - Computer graphics, computer vision, multi media, computer games
Domain Adaptation Computer Science and Informatics: Informatics and information systems, computer science, scientific computing, intelligent systems - Machine learning, statistical data processing and applications using signal processing (e.g. speech, image, video)
Domain Adaptation Computing Methodologies - IMAGE PROCESSING AND COMPUTER VISION
Domain Adaptation Computing methodologies - Machine learning

Attendance

As stated in point 25 of the Teaching Regulations for the A.Y. 2021/2022, attendance at the course of study is not mandatory.
Please refer to the Crisis Unit's latest updates for the mode of teaching.

Career management


Area riservata studenti