Studying at the University of Verona
Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.
Study Plan
The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.
1° Year
Modules | Credits | TAF | SSD |
---|
2° Year activated in the A.Y. 2022/2023
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
1 module among the following (1st year: Big Data epistemology and Social research; 2nd year: Cybercrime, Data protection in business organizations, Comparative and Transnational Law & Technology)
2 courses among the following (1st year: Business analytics, Digital Marketing and market research; 2nd year: Logistics, Operations & Supply Chain, Digital transformation and IT change, Statistical methods for Business intelligence)
2 courses among the following (1st year: Complex systems and social physics, Discrete Optimization and Decision Making, 2nd year: Statistical models for Data Science, Continuous Optimization for Data Science, Network science and econophysics, Marketing research for agrifood and natural resources)
2 courses among the following (1st year: Data Visualisation, Data Security & Privacy, Statistical learning, Mining Massive Dataset, 2nd year: Machine Learning for Data Science)
Legend | Type of training activity (TTA)
TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.
Discrete optimization and decision making (2021/2022)
Teaching code
4S009081
Academic staff
Coordinator
Credits
6
Language
English
Scientific Disciplinary Sector (SSD)
MAT/09 - OPERATIONS RESEARCH
Period
Secondo semestre dal Mar 7, 2022 al Jun 10, 2022.
Learning outcomes
The course aims to introduce the basics of mathematical programming, in order to develop modeling skills to formulate and solve complex real problems in both deterministic and probabilistic domains. The course will cover topics of integer and continuous linear programming, also providing good knowledge in the field of stochastic programming and robust optimization, as methods in the field of decision theory. The lectures will focus on the computational aspects of the different approaches, as well as on the respective modeling and application features in concrete areas.
At the end of the course the student has to show to have acquired the following skills:
- ability to deal with modeling, optimization and decision-making problems
- ability to develop computational tools for the application of theoretical solutions in the field of optimization of, e.g., routing, industrial production and financial processes
- ability to use specific software solutions to solve mathematical formulations, e.g., Gurobi, Cplex