Studying at the University of Verona
Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.
Academic calendar
The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.
Course calendar
The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..
Period | From | To |
---|---|---|
I semestre | Oct 1, 2020 | Jan 29, 2021 |
II semestre | Mar 1, 2021 | Jun 11, 2021 |
Session | From | To |
---|---|---|
Sessione invernale d'esame | Feb 1, 2021 | Feb 26, 2021 |
Sessione estiva d'esame | Jun 14, 2021 | Jul 30, 2021 |
Sessione autunnale d'esame | Sep 1, 2021 | Sep 30, 2021 |
Session | From | To |
---|---|---|
Sessione di laurea estiva | Jul 22, 2021 | Jul 22, 2021 |
Sessione di laurea autunnale | Oct 14, 2021 | Oct 14, 2021 |
Sessione di laurea autunnale - Dicembre | Dec 9, 2021 | Dec 9, 2021 |
Sessione invernale di laurea | Mar 16, 2022 | Mar 16, 2022 |
Period | From | To |
---|---|---|
Festa dell'Immacolata | Dec 8, 2020 | Dec 8, 2020 |
Vacanze Natalizie | Dec 24, 2020 | Jan 3, 2021 |
Vacanze di Pasqua | Apr 2, 2021 | Apr 6, 2021 |
Festa del Santo Patrono | May 21, 2021 | May 21, 2021 |
Festa della Repubblica | Jun 2, 2021 | Jun 2, 2021 |
Vacanze Estive | Aug 9, 2021 | Aug 15, 2021 |
Exam calendar
Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.
Academic staff
Study Plan
The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University. Please select your Study Plan based on your enrolment year.
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
1° Year
Modules | Credits | TAF | SSD |
---|
2° Year activated in the A.Y. 2021/2022
Modules | Credits | TAF | SSD |
---|
3° Year activated in the A.Y. 2022/2023
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Legend | Type of training activity (TTA)
TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.
Stochastic systems (2022/2023)
Teaching code
4S00254
Academic staff
Coordinatore
Credits
6
Language
Italian
Scientific Disciplinary Sector (SSD)
MAT/06 - PROBABILITY AND STATISTICS
Period
Semester 1 dal Oct 3, 2022 al Jan 27, 2023.
Learning objectives
Moreover a student will be able to analyse some advanced applications of dynamical systems arising from population dynamics, mechanics and traffic flows. Eventually a student will be also able to produce proofs using the typical tools of modern dynamical systems and will be able to read and report specific books and articles on dynamical systems and related applications.
Prerequisites and basic notions
Basics in Probability
Program
1. Conditional expectation and conditional distribution. Martingale. Stopping theorem and convergence theorem.
2. Discrete-time Markov chains. Markov property and transition probability. Irreducibility, aperiodicity. Stationary distributions. Reversible distributions.
3. Hitting times. One step analysis. Convergence to the stationary distribution. Law of large numbers for Markov chains. Markov Chain Monte Carlo methods: Metropolis algorithm and Gibbs sampler.
4. Reducible Markov chains. Transient and recurrent states. Absorption probabilities.
5. Continuous-time Markov chains. The Poisson process and its properties. Continuous-time Markov property. Semigroup associated with a Markov chain: continuity and differentiability; generator. Kolmogorov equations. Stationary distributions. Dynkin's formula. Probabilistic construction of a continuous-time Markov chain.
Bibliography
Didactic methods
All the topics will be illustrated in class. Additional material, as exercises, lecture notes and further references, will be available on Moodle page of the course.
The rights of students will be preserved in situations of travel limitation or confinement due to national provisions to combat COVID or in particular situations of fragile health. In these cases, you are invited to contact the teacher directly to organize the most appropriate remedial strategies.
Learning assessment procedures
The exam consists of a 180-minute written test. It includes exercises and theoretical questions, with at least one proof of those marked in the course program required.
Evaluation criteria
To pass the exam, the student must demonstrate:
-- to have understood the theoretical notions, showing detailed knowledge of definitions and statements, as well as of some proofs;
-- to be able to apply theory to problem-solving.
Exam language
Italiano
Type D and Type F activities
Le attività formative in ambito D o F comprendono gli insegnamenti impartiti presso l'Università di Verona o periodi di stage/tirocinio professionale.
Nella scelta delle attività di tipo D, gli studenti dovranno tener presente che in sede di approvazione si terrà conto della coerenza delle loro scelte con il progetto formativo del loro piano di studio e dell'adeguatezza delle motivazioni eventualmente fornite.
years | Modules | TAF | Teacher | |
---|---|---|---|---|
1° 2° | History and Didactics of Geology | D |
Guido Gonzato
(Coordinatore)
|
|
1° 2° 3° | Algorithms | D |
Roberto Segala
(Coordinatore)
|
|
1° 2° 3° | Scientific knowledge and active learning strategies | F |
Francesca Monti
(Coordinatore)
|
|
1° 2° 3° | Genetics | D |
Massimo Delledonne
(Coordinatore)
|
years | Modules | TAF | Teacher |
---|---|---|---|
1° 2° 3° | Algorithms | D |
Roberto Segala
(Coordinatore)
|
1° 2° 3° | Python programming language | D |
Vittoria Cozza
(Coordinatore)
|
1° 2° 3° | Organization Studies | D |
Giuseppe Favretto
(Coordinatore)
|
years | Modules | TAF | Teacher | |
---|---|---|---|---|
1° | Subject requirements: mathematics | D |
Rossana Capuani
|
|
1° 2° 3° | ECMI modelling week | F | Not yet assigned | |
1° 2° 3° | ESA Summer of code in space (SOCIS) | F | Not yet assigned | |
1° 2° 3° | Google summer of code (GSOC) | F | Not yet assigned | |
1° 2° 3° | Introduzione all'analisi non standard | F |
Sisto Baldo
|
|
1° 2° 3° | C Programming Language | D |
Pietro Sala
(Coordinatore)
|
|
1° 2° 3° | LaTeX Language | D |
Enrico Gregorio
(Coordinatore)
|
Career prospects
Module/Programme news
News for students
There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details: only in this way will you be able to receive notification of all the notices from your teachers and your secretariat via email and soon also via the Univr app.
Graduation
Attachments
Title | Info File |
---|---|
![]() |
31 KB, 29/07/21 |
![]() |
31 KB, 29/07/21 |
![]() |
171 KB, 17/02/22 |
List of theses and work experience proposals
theses proposals | Research area |
---|---|
Formule di rappresentazione per gradienti generalizzati | Mathematics - Analysis |
Formule di rappresentazione per gradienti generalizzati | Mathematics - Mathematics |
Proposte Tesi A. Gnoatto | Various topics |
Mathematics Bachelor and Master thesis titles | Various topics |
Stage | Research area |
---|---|
Internship proposals for students in mathematics | Various topics |
Erasmus+ and other experiences abroad
Attendance
As stated in the Teaching Regulations for the A.Y. 2022/2023, except for specific practical or lab activities, attendance is not mandatory. Regarding these activities, please see the web page of each module for information on the number of hours that must be attended on-site.
Please refer to the Crisis Unit's latest updates for the mode of teaching.