Studiare

In questa sezione è possibile reperire le informazioni riguardanti l'organizzazione pratica del corso, lo svolgimento delle attività didattiche, le opportunità formative e i contatti utili durante tutto il percorso di studi, fino al conseguimento del titolo finale.

Queste informazioni sono destinate esclusivamente agli studenti e alle studentesse già iscritti a questo corso.
Se sei un nuovo studente interessato all'immatricolazione, trovi le informazioni sul percorso di studi alla pagina del corso:

Laurea in Matematica applicata - Immatricolazione dal 2025/2026

Il piano didattico è l'elenco degli insegnamenti e delle altre attività formative che devono essere sostenute nel corso della propria carriera universitaria.
Selezionare il piano didattico in base all'anno accademico di iscrizione.

CURRICULUM TIPO:

2° Anno   Attivato nell'A.A. 2023/2024

InsegnamentiCreditiTAFSSD
6
A
MAT/02
6
B
MAT/03
6
C
SECS-P/01
6
C
SECS-P/01
Lingua inglese liv. B2
6
E
-

3° Anno   Attivato nell'A.A. 2024/2025

InsegnamentiCreditiTAFSSD
6
C
SECS-P/05
Prova finale
6
E
-
Attivato nell'A.A. 2023/2024
InsegnamentiCreditiTAFSSD
6
A
MAT/02
6
B
MAT/03
6
C
SECS-P/01
6
C
SECS-P/01
Lingua inglese liv. B2
6
E
-
Attivato nell'A.A. 2024/2025
InsegnamentiCreditiTAFSSD
6
C
SECS-P/05
Prova finale
6
E
-
Insegnamenti Crediti TAF SSD
Tra gli anni: 1°- 2°- 3°
Altre attività formative
6
F
-
Tra gli anni: 1°- 2°- 3°

Legenda | Tipo Attività Formativa (TAF)

TAF (Tipologia Attività Formativa) Tutti gli insegnamenti e le attività sono classificate in diversi tipi di attività formativa, indicati da una lettera.




S Stage e tirocini presso imprese, enti pubblici o privati, ordini professionali

Codice insegnamento

4S02752

Crediti

6

Lingua di erogazione

Italiano

Settore Scientifico Disciplinare (SSD)

MAT/01 - LOGICA MATEMATICA

Periodo

Primo semestre dal 3 ott 2022 al 27 gen 2023.

Obiettivi di apprendimento

L’insegnamento è un'introduzione ai metodi e concetti fondamentali della matematica, in particolare al metodo della dimostrazione ed al linguaggio degli insiemi. Al termine dell'insegnamento lo studente dovrà essere in grado di dimostrare un'adeguata capacità di analisi e sintesi e di generalizzazione ed astrazione, di riconoscere e produrre dimostrazioni rigorose e di formalizzare e risolvere problemi di moderata difficoltà, sempre limitatamente al programma dell'insegnamento.

Prerequisiti e nozioni di base

​Sono richieste adeguate conoscenze e competenze matematiche e scientifiche tipiche della formazione fornita dalla scuola secondaria superiore:
- Insiemi e funzioni, calcolo numerico e letterale, metodi di risoluzione di equazioni e disequazioni (e di sistemi di equazioni e disequazioni) di primo e secondo grado.
- Proprietà geometriche delle principali figure piane e solide e loro proprietà elementari.
- Rappresentazione nel piano cartesiano di elementi geometrici.
- Nozioni di base di trigonometria.
- Funzioni, grafici, relazioni.
- Funzioni potenza, radice, valore assoluto.
- Esponenziale e logaritmo e loro grafici.
- Funzioni trigonometriche e loro grafici.
- Risoluzione di semplici equazioni e disequazioni costruite con queste funzioni.
- Rappresentare dati, relazioni e funzioni con formule, tabelle, diagrammi a barre e altre modalità grafiche.
- ​Deduzioni logiche di moderata complessità e implicazioni logiche tra enunciati elementari.

Programma

Proposizioni e predicati
Connettivi e quantificatori
Insiemi, elementi, sottoinsiemi
Il metodo assiomatico-deduttivo
Terminologia matematica
Tecniche della dimostrazione
Relazioni e funzioni
Famiglie e sequenze
Gli assiomi di Peano
Sistemi di numeri
Metodi transfiniti

Bibliografia

Visualizza la bibliografia con Leganto, strumento che il Sistema Bibliotecario mette a disposizione per recuperare i testi in programma d'esame in modo semplice e innovativo.

Modalità didattiche

Tutte le ore dell'insegnamento saranno tenute in aula.

Al di fuori del monte ore dell'insegnamento, che comprende lezioni frontali, sono assegnati regolarmente esercizi da svolgere a casa che vengono corretti individualmente da un tutor e discussi durante le ore di esercitazione opzionali.

Modalità di verifica dell'apprendimento

L'esame consiste in una sola prova scritta a quesiti aperti e voti in trentesimi. Le modalità d’esame non sono differenziate fra frequentanti e non frequentanti.

Le/gli studentesse/studenti con disabilità o disturbi specifici di apprendimento (DSA), che intendano richiedere l'adattamento della prova d'esame, devono seguire le indicazioni riportate QUI

Criteri di valutazione

L'esame ha lo scopo di verificare la capacità di formalizzare e risolvere problemi, il possesso di un'adeguata capacità di analisi, sintesi, generalizzazione ed astrazione, e la capacità di riconoscere e produrre dimostrazioni rigorose, sempre limitatamente al programma dell'insegnamento.

Criteri di composizione del voto finale

Il voto finale consiste nell'esito della sola prova scritta.

Bonus esercizi: Regolarmente verranno assegnati esercizi da svolgere a casa che preparano all'esame. Le soluzioni verranno discusse durante le ore di esercitazione opzionali. Gli elaborati degli studenti verranno corretti individualmente da un tutore. Un buon punteggio negli esercizi darà luogo ad un bonus per l’esame.

Lingua dell'esame

Italiano