Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.

2° Year  activated in the A.Y. 2023/2024

ModulesCreditsTAFSSD
12
B
INF/01
6
C
FIS/01
6
B
ING-INF/05
6
C
ING-INF/04
12
B
ING-INF/05

3° Year  activated in the A.Y. 2024/2025

ModulesCreditsTAFSSD
12
B
ING-INF/05
Final exam
6
E
-
activated in the A.Y. 2023/2024
ModulesCreditsTAFSSD
12
B
INF/01
6
C
FIS/01
6
B
ING-INF/05
6
C
ING-INF/04
12
B
ING-INF/05
activated in the A.Y. 2024/2025
ModulesCreditsTAFSSD
12
B
ING-INF/05
Final exam
6
E
-
Modules Credits TAF SSD
Between the years: 2°- 3°
Training
6
F
-
Between the years: 2°- 3°

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




S Placements in companies, public or private institutions and professional associations

Teaching code

4S02843

Credits

6

Coordinator

Paolo Dai Pra

Language

Italian

Scientific Disciplinary Sector (SSD)

MAT/06 - PROBABILITY AND STATISTICS

The teaching is organized as follows:

Teoria

Credits

4

Period

Semester 2

Laboratorio

Credits

2

Period

Semester 2

Academic staff

Matteo Calgaro

Learning objectives

The course aims at providing the fundamental concepts of descriptive statistics and probability, with the task of modeling real problems by means of probability methods and applying to real problems statistic techniques. At the end of the course the student will have to demonstrate to understand the main statistical techniques for describing problems; to be able to interpret results of statistical analyses; to be able to develop know-how necessary to continue the study autonomously in the context of statistical analysis.

Prerequisites and basic notions

-

Program

------------------------
MM: Teoria
------------------------
(1) Descriptive Statistics. Describing data sets (frequency tables and graphs). Summarizing data sets (sample mean, median, and mode, sample variance and standard deviation, percentiles and box plots). Normal data sets. Sample correlation coefficient. (2) Probability theory. Elements of probability: sample space and events, Venn diagrams and the algebra of events, axioms of probability, sample spaces having equally likely outcomes, conditional probability, Bayes’ formula, independent events. Random variables and expectation: types of random variables, expected value and properties, variance, covariance and variance of sums of random variables. Moment generating functions. Weak law of large numbers. Special random variables: special random variables and distributions arising from the normal (chi-square, t, F). (3) Statistical inference. Distributions of sampling statistics. Parameter estimation (maximum likelihood estimators, interval estimates). Hypothesis testing and significance levels. (4) Regression. Least squares estimators of the regression parameters. Distribution of the estimators. Statistical inferences about the regression parameters. The coefficient of determination and the sample correlation coefficient. Analysis of residuals: assessing the model. Transforming to linearity. Weighted least squares.
------------------------
MM: Laboratorio
------------------------
The course includes a series of laboratories in the computer lab with exercises in MATLAB environment. After an introduction to MATLAB and to the main functions and tools useful for statistics, some exercises will be proposed on descriptive statistics and probability; for computing the probability density function (pdf) and cumulative distribution function (cdf) of special random variables, for generating random data and estimating parameters; on hypothesis testing for distributions and linear regression. The laboratories complement lectures by consolidating learning and developing problem-solving and hands-on practical skills.

Bibliography

Visualizza la bibliografia con Leganto, strumento che il Sistema Bibliotecario mette a disposizione per recuperare i testi in programma d'esame in modo semplice e innovativo.

Didactic methods

Teaching methods. Regular lectures with power point presentation and blackboard and laboratory exercises. Educational material will be available to students enrolled in the course on the Moodle platform. This material includes lecture presentations in PDF format and material related to laboratory activities. For further details and supplementary materials, please refer to the reference books.

Learning assessment procedures

The exam consists of a computer test via Moodle. The exam consists of theoretical questions (test with multiple choice), problems, and laboratory questions (open questions).

Students with disabilities or specific learning disorders (SLD), who intend to request the adaptation of the exam, must follow the instructions given HERE

Evaluation criteria

To pass the exam, the students must show that: - they have understood the basic concepts of probability theory and statistics; - they are able to use the knowledge acquired during the course to solve the assigned problem; - they are able to program in MATLAB environment in the statistical and probabilistic context.

Criteria for the composition of the final grade

The final grade will be the average of the three grades (theory, exercises, laboratory).

Exam language

Italiano