Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

Academic calendar

The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.

Academic calendar

Course calendar

The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..

Definition of lesson periods
Period From To
Primo semestre Oct 3, 2022 Jan 27, 2023
Secondo semestre Mar 6, 2023 Jun 16, 2023

Exam calendar

Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.

Exam calendar

Should you have any doubts or questions, please check the Enrolment FAQs

Academic staff

A B C D F G M R S T V

Albi Giacomo

giacomo.albi@univr.it +39 045 802 7913

Bombieri Nicola

nicola.bombieri@univr.it +39 045 802 7094

Bonacina Maria Paola

mariapaola.bonacina@univr.it +39 045 802 7046

Boscolo Galazzo Ilaria

ilaria.boscologalazzo@univr.it +39 045 8127804

Calabrese Bernardo

bernardo.calabrese@univr.it

Castellini Alberto

alberto.castellini@univr.it +39 045 802 7908

Cicalese Ferdinando

ferdinando.cicalese@univr.it +39 045 802 7969

Cristani Matteo

matteo.cristani@univr.it 045 802 7983

Cristani Marco

marco.cristani@univr.it +39 045 802 7841

Di Persio Luca

luca.dipersio@univr.it +39 045 802 7968

Di Pierro Alessandra

alessandra.dipierro@univr.it +39 045 802 7971

Farinelli Alessandro

alessandro.farinelli@univr.it +39 045 802 7842

Ferrari Fabio

fabio.ferrari@univr.it 045-8028859

Fummi Franco

franco.fummi@univr.it 045 802 7994

Giachetti Andrea

andrea.giachetti@univr.it +39 045 8027998

Giacobazzi Roberto

roberto.giacobazzi@univr.it +39 045 802 7995

Gottardi Donata

donata.gottardi@univr.it +39 045 8028866

Masini Andrea

andrea.masini@univr.it 045 802 7922

Meli Daniele

daniele.meli@univr.it

Menegaz Gloria

gloria.menegaz@univr.it +39 045 802 7024

Murino Vittorio

vittorio.murino@univr.it 045 802 7996

Rizzi Romeo

romeo.rizzi@univr.it +39 045 8027088

Sala Pietro

pietro.sala@univr.it 0458027850

Setti Francesco

francesco.setti@univr.it +39 045 802 7804

Svaluto Ferro Sara

sara.svalutoferro@univr.it 045 8028783

Troiano Stefano

stefano.troiano@univr.it +39 045 8028817

Vadala' Rosa Maria

rosamaria.vadala@univr.it

Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University. Please select your Study Plan based on your enrolment year.

ModulesCreditsTAFSSD
Prova finale
20
E
-

2° Year

ModulesCreditsTAFSSD
Prova finale
20
E
-
Modules Credits TAF SSD
Between the years: 1°- 2°2 MODULES TO BE CHOSEN AMONG THE FOLLOWING
Between the years: 1°- 2°2 MODULES TO BE CHOSEN AMONG THE FOLLOWING
Between the years: 1°- 2°2 MODULES TO BE CHOSEN AMONG THE FOLLOWING
6
C
ING-INF/05
6
C
INF/01 ,ING-INF/05
6
C
INF/01
Between the years: 1°- 2°
Between the years: 1°- 2°

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




S Placements in companies, public or private institutions and professional associations

Teaching code

4S010687

Credits

6

Language

English en

Scientific Disciplinary Sector (SSD)

INF/01 - INFORMATICS

Period

Secondo semestre dal Mar 6, 2023 al Jun 16, 2023.

Learning objectives

Many problems in computer science involve settings where multiple self-interested parties interact, e.g., resource allocation in large networks, online advertising, managing electronic marketplaces and networked computer systems. Computational (algorithmic) game theory complements economic models and solution concepts, to reason about how agents should act when the actions of other agents affect their utilities, with a focus to discuss computational complexity issues, and the use of approximation bounds for models where exact solutions are unrealistic. The course aims to give students an introduction to the main concepts in the field of computational game theory with representative models and (algorithmic) solution chosen to illustrate broader themes. Students will acquire the basic skills to design models and computer systems that performs optimally/well in some paradigmatic multiagent settings; and to reason about the design of mechanisms to incentivate self-interested users to behave in a desirable way.

Examination methods

The exam verifies that the students have acquired sufficient confidence and skill in the application of the basic game thoretic models and their solutions, and are able to contextualize them in novel multiagent scenarios.
The exam consists of a written test with open questions and multiple choice questions. The test includes some mandatory exercises and a set of exercises among which the student can choose what to work on. The mandatory exercises are meant to verify a straightforward application of the elements studied in class. The "free-choice" exercises test the ability of students to re-elaborate these notions in "new" scenarios.

Prerequisites and basic notions

Basic knowledge of discrete maths and calculus
Basic probability theory

Program

1. Introduction to strategic games, costs, payoffs; basic solution concepts; equilibria and learning in games; Nash equilibrium; repeated games; cooperative games. 2. Basic computational issues of finding equilibrium. 3. Repeatedly making decisions with uncertainty; learning, regret minimization and equilibrium. 3. Graphical games and connections to probabilistic inference in machine learning. 4. Elements of Mechanism Design; Auctions; distributed mechanism design.

Bibliography

Visualizza la bibliografia con Leganto, strumento che il Sistema Bibliotecario mette a disposizione per recuperare i testi in programma d'esame in modo semplice e innovativo.

Didactic methods

The course is ogranized around 2 weekly lectures, homowork assigned to clarify and deepen on the theory topics and some exercise sessions, where the solution to these exercises will be discussed.

Learning assessment procedures

The exam consists of a written test with open questions and multiple choice questions. The test includes some mandatory exercises and a set of exercises among which the student can choose what to work on. The mandatory exercises are meant to verify a straightforward application of the elements studied in class. The "free-choice" exercises test the ability of students to re-elaborate these notions in "new" scenarios.
Depending on the number of students attending, the exam can be partially based on the discussion of a scientific article on the application of computational game theory

Evaluation criteria

The exam verifies that the students have acquired sufficient confidence and skill in the application of the basic game thoretic models and their solutions, and are able to contextualize them in novel multiagent scenarios.

Criteria for the composition of the final grade

In the case the exam includes two parts (e.g., written test and oral discussion of an article) the final grade will be computed by averaging the grades awarded to the two parts of the exam.

Exam language

italiano e inglese

Type D and Type F activities

Type D learning activities are the student's choice, type F activities are additional knowledge useful for job placement (internships, transversal skills, project works, etc.). According to the Teaching Regulations of the Course, some activities can be chosen and entered independently in the booklet, others must be approved by a special committee to verify their consistency with the study plan. Type D or F learning activities can be covered by the following activities.

1. Modules taught at the University of Verona

Include the modules listed below and/or in the Course Catalogue (which can also be filtered by language of delivery via Advanced Search).

Booklet entry mode: if the teaching is included among those listed below, the student can enter it independently during the period in which the curriculum is open; otherwise, the student must make a request to the Secretariat, sending the form to carriere.scienze@ateneo.univr.it during the period indicated.

2. CLA certificate or language equivalency

In addition to those required by the curriculum/study plan, the following are recognized for those matriculated from A.Y. 2021/2022:

  • English language: 3 CFUs are recognized for each level of proficiency above that required by the course of study (if not already recognized in the previous course of study).
  • Other languages and Italian for foreigners: 3 CFUs are recognized for each proficiency level starting from A2 (if not already recognized in the previous study cycle).

These CFUs will be recognized, up to a maximum of 6 CFUs in total, of type F if the study plan allows it, or of type D. Additional elective credits for language knowledge may be recognized only if consistent with the student's educational project and if adequately justified.

Those enrolled until A.Y. 2020/2021 should consult the information found here.

Method of inclusion in the booklet: request the certificate or equivalency from CLA and send it to the Student Secretariat - Careers for the inclusion of the exam in the career, by email: carriere.scienze@ateneo.univr.it

Warning: to students, who have achieved the B2 level of English in their three-year careers (bachelor), we emphasize the need to replace the full B2 level of English, provided by the study plan, with the C1 level of "computerized" English (prova informatizzata) or to acquire other language proficiency in a community language at least at the full B1 level.

3. Transversal skills

Discover the training paths promoted by the University's TALC - Teaching and learning center intended for students regularly enrolled in the academic year of course delivery https://talc.univr.it/it/competenze-trasversali

Mode of inclusion in the booklet: the teaching is not expected to be included in the curriculum. Only upon obtaining the Open Badge will the booklet CFUs be automatically validated. The registration of CFUs in career is not instantaneous, but there will be some technical time to wait.  

4. Internship/internship period

In addition to the CFUs stipulated in the curriculum/study plan (check carefully what is indicated on the Teaching Regulations): here information on how to activate the internship. 

Check in the regulations which activities can be Type D and which can be Type F.

Modules not yet included

Career prospects


Module/Programme news

News for students

There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details.

Career management


Attendance

As stated in point 25 of the Teaching Regulations for the A.Y. 2021/2022, attendance at the course of study is not mandatory.
Please refer to the Crisis Unit's latest updates for the mode of teaching.

Graduation

For schedules, administrative requirements and notices on graduation sessions, please refer to the Graduation Sessions - Science and Engineering service.

Area riservata studenti