Training and Research
PhD Programme Courses/classes - 2023/2024
Non monotonic reasoning
Credits: 3
Language: English
Teacher: Matteo Cristani
Sustainable Embodied Mechanical Intelligence
Credits: 3
Language: English
Teacher: Giovanni Gerardo Muscolo
Brain Computer Interfaces
Credits: 3
Language: English
Teacher: Silvia Francesca Storti
A practical interdisciplinary PhD course on exploratory data analysis
Credits: 4
Language: English
Teacher: Prof. Vincenzo Bonnici (Università di Parma)
Multimodal Learning and Applications
Credits: 5
Language: English
Teacher: Cigdem Beyan
Introduction to Blockchain
Credits: 3
Language: English
Teacher: Sara Migliorini
Cyber-physical systems security
Credits: 3
Language: English/Italian
Teacher: Massimo Merro
Advanced Data Structures for Textual Data
Credits: 3
Language: English
Teacher: Zsuzsanna Liptak
AI and explainable models
Credits: 5
Language: English
Teacher: Gloria Menegaz, Lorenza Brusini
Automated Software Testing
Credits: 4
Language: English
Teacher: Mariano Ceccato
Autonomous Agents and Multi-Agent Systems
Credits: 5
Language: English
Teacher: Alessandro Farinelli
Elements of Machine Teaching: Theory and Appl.
Credits: 3
Language: English
Teacher: Ferdinando Cicalese
Foundations of quantum languages
Credits: 3
Language: English
Teacher: Margherita Zorzi
Introduction to Quantum Machine Learning
Credits: 4
Language: English
Teacher: Alessandra Di Pierro
Laboratory of quantum information in classical wave-optics analogy
Credits: 3
Language: English
Teacher: Claudia Daffara
Autonomous Agents and Multi-Agent Systems (2023/2024)
Teacher
Referent
Credits
5
Language
English
Class attendance
Free Choice
Location
VERONA
Learning objectives
The course illustrates the main issues related to the development of intelligent agents that can perceive, plan, act and interact with other agents and humans. The goal is to provide students with tools to design, apply and evaluate algorithms that allow intelligent agents to interact with the surrounding environment by performing complex tasks with a high level of autonomy. At the end of the course, students will have to demonstrate that they understand the fundamental concepts related to: i) Cooperative Artifical Intelligence and in particular optimization in multi-agent contexts; ii) Machine Learning with emphasis on Reinforcement Learning; iii) Artificial Intelligence techniques for robotic systems. Students will have to demonstrate knowledge and be able to use the main tools for the development of autonomous agents and multi-agent systems. Students will also have to know the open challenges and limitations of state-of-the-art techniques for the area related to intelligent agents and multi-agent systems and have the ability to continue their studies independently by developing innovative approaches aimed at improve the state of the art.
Prerequisites and basic notions
The course has no specific requirements. For the successful completion of the course, a good knowledge in the areas of Computer Science and Mathematics is useful.
Program
i) Introduction to the broad areas of Autonomous Agents and Multi-Agent Systems and Cooperative Artificial Intelligence;
ii) algorithms and techniques to perform optimization in the context of Multi-Agent Systems (with a specific focus on Distributed Constraint Optimization approaches);
ii) techniques and methodologies to learn how to operate in uncertain and dynamic environment, with a specific focus on reinforcement learning, multi-agent reinforcement learning and safe reinforcement learning;
iii) Artificial Intelligence techniques for mobile robots and multi-robot systems (e.g., multi-robot coordination, deep reinforcement learning for robotic systems).
Didactic methods
Lectures in classrooms and discussion of relevant articles and publications.
Learning assessment procedures
The exam can be taken by choosing between two options: i) a project that includes an experimental part focused on the techniques studied during the course; ii) an oral presentation based on state-of-the-art articles and papers that explores some of the topics studied during the course.
Assessment
To pass the exam, students will have to demonstrate that they: - have an in-depth knowledge of the area of Autonomous Agents and Multi-Agent Systems;
- are able to present the topics of the course in a precise and organic way;
- can identify the limitations and open problems related to the topics studied during the course.
Criteria for the composition of the final grade
The grade will be passed/failed.
PhD school courses/classes - 2023/2024
Please note: Additional information will be added during the year. Currently missing information is labelled as “TBD” (i.e. To Be Determined).
PhD students must obtain a specified number of CFUs each year by attending teaching activities offered by the PhD School.
First and second year students must obtain 8 CFUs. Teaching activities ex DM 226/2021 provide 5 CFUs; free choice activities provide 3 CFUs.
Third year students must obtain 4 CFUs. Teaching activities ex DM 226/2021 provide 2 CFUs; free choice activities provide 2 CFUs.
Registering for the courses is not required unless explicitly indicated; please consult the course information to verify whether registration is required or not. When registration is actually required, no confirmation e-mail will be sent after signing up.
Teaching Activities ex DM 226/2021: Linguistic Activities
ENGLISH FOR ACADEMIC PRESENTATION SKILLS [Arts and Humanities]
Credits: 2,5
Language: English
ENGLISH FOR ACADEMIC PRESENTATION SKILLS [Law and Economics]
Credits: 2,5
Language: English
ENGLISH FOR ACADEMIC PRESENTATION SKILLS [Life and Health Sciences - 1 st Session]
Credits: 2,5
Language: English
ENGLISH FOR ACADEMIC PRESENTATION SKILLS [Life and Health Sciences - 2 nd Session]
Credits: 2,5
Language: English
ENGLISH FOR ACADEMIC PRESENTATION SKILLS [Natural Sci. and Engineering-2nd Session]
Credits: 2,5
Language: English
ENGLISH FOR ACADEMIC PRESENTATION SKILLS [Natural Sci. and Engineering-1st Session]
Credits: 2,5
Language: English
Teacher: Monica Antonello
ENGLISH FOR ACADEMIC WRITING SKILLS [Arts and Humanities]
Credits: 2,5
Language: English
ENGLISH FOR ACADEMIC WRITING SKILLS [Law and Economics]
Credits: 2,5
Language: English
ENGLISH FOR ACADEMIC WRITING SKILLS [Life and Health Sciences - 1 st Session]
Credits: 2,5
Language: English
ENGLISH FOR ACADEMIC WRITING SKILLS [Natural Sci. and Engineering-1st Session]
Credits: 2,5
Language: English
Teacher: Monica Antonello
ENGLISH FOR ACADEMIC WRITING SKILLS [Natural Sci. and Engineering-2nd Session]
Credits: 2,5
Language: English
ENGLISH FOR ACADEMIC WRITING SKILLS [Life and Health Sciences - 2 nd Session]
Credits: 2,5
Language: English
Teaching Activities ex DM 226/2021: Research management and Enhancement
SEMINARIO AVANZATO SULLE RISORSE BIBLIOTECARIE PER LA RICERCA [Arts and Humanities]
Credits: 2,5
Language: Italian
Teacher: Donatella Boni
SEMINARIO AVANZATO SULLE RISORSE BIBLIOTECARIE PER LA RICERCA [Law and Economics]
Credits: 2,5
Language: Italian
Teacher: Luisella Zocca
SEMINARIO AVANZATO SULLE RISORSE BIBLIOTECARIE PER LA RICERCA [Scientific Area]
Credits: 2,5
Language: Italian
Teacher: Elena Scanferla
Teaching Activities ex DM 226/2021: Statistics and Computer Sciences
INTRODUCTION TO PROBABILITY (MODULE I)
Credits: 1
Language: English
Teacher: Marco Minozzo
INTRODUCTION TO PROBABILITY (MODULE II)
Credits: 1
Language: English
Teacher: Marco Minozzo
INTRODUCTION TO STATISTICAL INFERENCE
Credits: 1
Language: English
Validità e affidabilità delle misure e dei test diagnostici
Credits: 0,5
Language: English
Teacher: Alessandro Marcon
BASIC LEVEL STATISTICS
Credits: 2,5
Language: English
BASIC LEVEL STATISTICS
Credits: 2,5
Language: Italian
Statistical analysis with R - module I
Credits: 1
Language: Italian
Teacher: Erica Secchettin
GENERALIZED LINEAR MODELS: LOGISTIC REGRESSION, LOGLINEAR MODEL, POISSON MODEL
Credits: 2
Language: English
Teacher: Lucia Cazzoletti
Disegno dello studio nella ricerca osservazionale e sperimentale
Credits: 1,5
Language: English
Teacher: Alessandro Marcon
Calcolo della numerosità campionaria in funzione di una precisione o potenza statistica prefissata
Credits: 1
Language: English
Teacher: Giuseppe Verlato
Introduzione alla meta-analisi per la ricerca biomedica (revisione della letteratura, raccolta dei dati, costruzione del database)
Credits: 1
Language: English
Teacher: Giuseppe Verlato
Applicazioni della meta-analisi in campo epidemiologico e medico
Credits: 1
Language: Inglese
Teacher: Giuseppe Verlato
Survival analysis: log-rank test, Kaplan-Meier survival curves, Cox regression model
Credits: 1,5
Language: Inglese - English
Teacher: Simone Accordini
INTERMEDIATE STATISTICS [Recommended for Human Sciences]
Credits: 2,5
Language: English
INTERMEDIATE STATISTICS [Tutti i corsi di studio]
Credits: 2,5
Language: English
Statistical analysis with R - module II
Credits: 2
Language: Italian
Teacher: Erica Secchettin
Teaching Activities: Free choice
PROTECTING PSYCHOLOGICAL WELL-BEING IN THE PHD PROGRAM: WHAT DO WE NEED TO CONSIDER FOR BEING A GOOD SCIENTIST: BEST PRACTICE AND THE ETHICS OF SCIENCE
Credits: 1
Language: inglese
Teacher: Paola Cesari
QUANDO LA RICERCA SI FA ETICA (PERCORSO ORGANIZZATO E FINANZIATO DAL TEACHING AND LEARNING CENTER DI UNIVR)
Credits: 2
Language: Italian
Teacher: Roberta Silva
LA COMUNICAZIONE UMANISTICA: OPPORTUNITA' E RISCHI
Credits: 1
Language: Italiano
Italian Poetry abroad
Credits: 1
Language: Italiano
Teacher: Massimo Natale
BUSINESS MODEL CANVAS PILL
Credits: 1,5
Language: English
IMPARA IL MARKETING DIGITALE
Credits: 1,5
Language: English
APPROCCI E METODOLOGIE PARTECIPATIVE NELLA RICERCA CON GLI ATTORI DEL TERRITORIO
Credits: 1,5
Language: Italian
Teacher: Cristiana Zara
DOING INTERVIEWS IN QUALITATIVE RESEARCH
Credits: 1,5
Language: English
Teacher: Chiara Sità
DIFFERENTIAL DIAGNOSIS OF DEMYELINATING DISEASES OF THE CENTRAL NERVOUS SYSTEM
Credits: 2
Language: English
Teacher: Alberto Gajofatto
IL SONNO E I SUOI DISTURBI: FOCUS SULLE PARASONNIE E I DISTURBI DEL MOVIMENTO IN SONNO
Credits: 1
Language: English
Teacher: Elena Antelmi
IMAGING TECHNIQUES FOR BODY COMPOSITION ANALYSIS
Credits: 1
Language: English
Teacher: Carlo Zancanaro
OPEN SCIENCE: THE MIGHTY STICK AGAINST "BAD" SCIENCE
Credits: 2
Language: English
Teacher: Alberto Scandola
THE EMPIRICAL PHENOMENOLOGICAL METHOD (EPM): THEORETICAL FOUNDATION AND EMPIRICAL APPLICATION IN EDUCATIONAL AND HEALTHCARE FIELDS
Credits: 2
Language: English
THE PATHWAY OF OXYGEN: CAUSE OF HYPOXEMIA
Credits: 1
Language: English
Teacher: Carlo Capelli
Faculty
PhD students
No people are present. 40° Ciclo not started.
Loading...
Guidelines for PhD students
Below you will find the files that contain the Guidelines for PhD students and rules for the acquisition of ECTS credits (in Italian: "CFU") for the Academic Year 2023/2024.
Documents
Title | Info File |
---|---|
Dottorandi: linee guida generali (2023/2024) | pdf, it, 93 KB, 26/02/24 |
PhD students: general guidelines (2023/2024) | pdf, en, 94 KB, 26/02/24 |