Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

Academic calendar

The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.

Academic calendar

Course calendar

The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..

Definition of lesson periods
Period From To
Semester 1 Oct 2, 2023 Jan 26, 2024
Semester 2 Mar 4, 2024 Jun 14, 2024
Exam sessions
Session From To
Winter exam session Jan 29, 2024 Mar 1, 2024
Summer exam session Jun 17, 2024 Jul 31, 2024
Autumn exam session Sep 2, 2024 Sep 30, 2024
Degree sessions
Session From To
Summer graduation session Jul 19, 2024 Jul 19, 2024
Autumn graduation session Oct 21, 2024 Oct 21, 2024
Winter graduation session Mar 26, 2025 Mar 26, 2025
Holidays
Period From To
Festa di Ognissanti Nov 1, 2023 Nov 1, 2023
Festa dell'Immacolata Dec 8, 2023 Dec 8, 2023
Vacanze di Natale Dec 24, 2023 Jan 7, 2024
Festività pasquali Mar 29, 2024 Apr 1, 2024
Ponte della Festa della Liberazione Apr 25, 2024 Apr 26, 2024
Festa del Lavoro May 1, 2024 May 1, 2024
Festività del Santo Patrono: San Zeno May 21, 2024 May 21, 2024
Festa della Repubblica Jun 2, 2024 Jun 2, 2024
Vacanze estive Aug 12, 2024 Aug 17, 2024

Exam calendar

Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.

Exam calendar

Should you have any doubts or questions, please check the Enrollment FAQs

Academic staff

A B C D F G M P R S T V Z

Albi Giacomo

symbol email giacomo.albi@univr.it symbol phone-number +39 045 802 7913

Badino Massimiliano

symbol email massimiliano.badino@univr.it symbol phone-number +39 045 802 8459

Bombieri Nicola

symbol email nicola.bombieri@univr.it symbol phone-number +39 045 802 7094

Bonacina Maria Paola

symbol email mariapaola.bonacina@univr.it symbol phone-number +39 045 802 7046

Boscolo Galazzo Ilaria

symbol email ilaria.boscologalazzo@univr.it symbol phone-number +39 045 8127804

Calabrese Bernardo

symbol email bernardo.calabrese@univr.it

Caputo Ariel

symbol email ariel.caputo@univr.it

Carra Damiano

symbol email damiano.carra@univr.it symbol phone-number +39 045 802 7059

Castellini Alberto

symbol email alberto.castellini@univr.it symbol phone-number +39 045 802 7908

Cicalese Ferdinando

symbol email ferdinando.cicalese@univr.it symbol phone-number +39 045 802 7969

Combi Carlo

symbol email carlo.combi@univr.it symbol phone-number +390458027985

Cristani Matteo

symbol email matteo.cristani@univr.it symbol phone-number 045 802 7983

Cristani Marco

symbol email marco.cristani@univr.it symbol phone-number +39 045 802 7841

Dalla Preda Mila

symbol email mila.dallapreda@univr.it

D'Asaro Fabio Aurelio

symbol email fabioaurelio.dasaro@univr.it symbol phone-number 0458028431

Di Persio Luca

symbol email luca.dipersio@univr.it symbol phone-number +39 045 802 7968

Di Pierro Alessandra

symbol email alessandra.dipierro@univr.it symbol phone-number +39 045 802 7971

Farinelli Alessandro

symbol email alessandro.farinelli@univr.it symbol phone-number +39 045 802 7842

Ferrari Fabio

symbol email fabio.ferrari@univr.it symbol phone-number 045-8425359

Fummi Franco

symbol email franco.fummi@univr.it symbol phone-number 045 802 7994

Gatti Stefano

symbol email stefano.gatti@univr.it

Giachetti Andrea

symbol email andrea.giachetti@univr.it symbol phone-number +39 045 8027998

Meli Daniele

symbol email daniele.meli@univr.it symbol phone-number 7908

Menegaz Gloria

symbol email gloria.menegaz@univr.it symbol phone-number +39 045 802 7024

Migliorini Sara

symbol email sara.migliorini@univr.it symbol phone-number +39 045 802 7908

Mirtuono Pasquale

symbol email pasquale.mirtuono@univr.it

Murino Vittorio

symbol email vittorio.murino@univr.it symbol phone-number 045 802 7996

Peruzzi Marco

symbol email marco.peruzzi@univr.it symbol phone-number 045 8025338

Rizzi Romeo

symbol email romeo.rizzi@univr.it symbol phone-number +39 045 8027088

Sala Pietro

symbol email pietro.sala@univr.it symbol phone-number 0458027850

Setti Francesco

symbol email francesco.setti@univr.it symbol phone-number +39 045 802 7804

Svaluto Ferro Sara

symbol email sara.svalutoferro@univr.it symbol phone-number 045 8028783

Tilola Diego

symbol email diego.tilola@univr.it

Tomazzoli Claudio

symbol email claudio.tomazzoli@univr.it

Torsello Marco

symbol email marco.torsello@univr.it symbol phone-number +39 045 8425381

Troiano Stefano

symbol email stefano.troiano@univr.it symbol phone-number +39 045 8425317

Vadala' Rosa Maria

symbol email rosamaria.vadala@univr.it

Zorzi Margherita

symbol email margherita.zorzi@univr.it symbol phone-number +39 045 802 7045

Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.

2° Year  activated in the A.Y. 2024/2025

ModulesCreditsTAFSSD
Final exam
18
E
-
activated in the A.Y. 2024/2025
ModulesCreditsTAFSSD
Final exam
18
E
-
Modules Credits TAF SSD
Between the years: 1°- 2°
2 modules among the following (1st year: Knowledge representation, Natural language processing, HCI Intelligent interfaces - 2nd year: AI & Cloud, Visual intelligence, Statistical learning - 1st and 2nd year: Computer Vision & Deep Learning)
6
C
INF/01
Between the years: 1°- 2°
2 modules among the following (1st year: Knowledge representation, Natural language processing, HCI Intelligent interfaces - 2nd year: AI & Cloud - 1st and 2nd year: Computer Vision & Deep learning)
6
B
INF/01
Between the years: 1°- 2°
2 courses among the following (A.A. 2023/24: Complex systems and Network Science not activated)
6
C
ING-INF/05
6
C
INF/01 ,ING-INF/05
6
C
INF/01
Between the years: 1°- 2°
Further activities: 3 CFU training and 3 CFU further language skill or 6 CFU training. International students (i.e. students who do not have an Italian bachelor’s degree) must compulsorily gain 3 CFU of Italian language skills (at least A2 level) and 3 CFU training.
6
F
-
Between the years: 1°- 2°

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




S Placements in companies, public or private institutions and professional associations

Teaching code

4S010675

Credits

12

Language

English en

Scientific Disciplinary Sector (SSD)

ING-INF/05 - INFORMATION PROCESSING SYSTEMS

Courses Single

Authorized

The teaching is organized as follows:

Advanced programming for AI

Credits

6

Period

Semester 1, Semester 2

Reinforcement Learning

Credits

6

Period

Semester 1, Semester 2

Academic staff

Alberto Castellini

Learning objectives

The reinforcement learning module introduces students to reinforcement learning and planning under uncertainty. In particular, it is focused on the design of algorithms that enable machines to learn based on reinforcements, hence from partial, implicit and delayed feedback obtained by repeatedly interact with the environment or users. At the end of the course, students will have to demonstrate that they have acquired the ability to i) tackle sequential decision problems with reinforcement learning techniques, ii) identify and apply the most effective and efficient algorithms to solve specific sequential decision problems, iii) designing new reinforcement learning algorithms. In particular, the acquired knowledge concerns advanced techniques for the resolution of Markov Decision Process (eg, research with Monte Carlo methods), bandit problems, model-based and model-free reinforcement learning, Bayesian reinforcement learning, deep reinforcement learning, and advanced reinforcement learning techniques (safe policy improvement, partially observable environments, hierarchical reinforcement learning, imitation-based learning, inverse reinforcement learning, and meta-learning). The Advanced Programming for AI module aims to provide information on programming languages, tools and software architectures that have emerged in the field of software systems (SW) based on artificial intelligence. The goal is to provide students with an understanding of the specific characteristics and key principles underlying various languages and advanced tools and to solve some classes of AI problems. Students will acquire programming skills in Python, will be able to write programs to solve typical problems and to assemble software modules, manage models, patterns, and perform the deployment of those modules on cloud platforms, with particular focus on interoperability and explainability.

Prerequisites and basic notions

Being a first year, first semester exam, there are no specific prerequisites other than those required for access to the degree course.

Program

REINFORCEMENT LEARNING
- Markov Decision Process
- Research with Monte Carlo methods
- Bandit problems
- Model-based and model-free reinforcement learning
- Bayesian reinforcement learning
- Deep reinforcement learning
- Advanced reinforcement learning techniques
--- safe policy improvement
--- partially observable environments
--- hierarchical reinforcement learning
--- imitation-based learning
--- inverse reinforcement learning
--- meta-learning
ADVANCED PROGRAMMING FOR AI

Bibliography

Visualizza la bibliografia con Leganto, strumento che il Sistema Bibliotecario mette a disposizione per recuperare i testi in programma d'esame in modo semplice e innovativo.

Didactic methods

Lectures, laboratory experiences, exercises.

Learning assessment procedures

To pass the exam, students will have to demonstrate that they: - understand the principles behind how reinforcement learning and methods for programming modules based on artificial intelligence work - be able to expose concepts of reinforcement learning and programming of modules based on artificial intelligence in a precise and organic way without digressions, - knowing how to apply the acquired knowledge to solve application problems presented in the form of exercises, questions and projects.
The exam consists of an oral test on the topics covered in the course. In case of high participation, the oral exam will be replaced by a written exam with equivalent questions. The questions may concern both the theoretical part and the exercises carried out in the laboratory.

Students with disabilities or specific learning disorders (SLD), who intend to request the adaptation of the exam, must follow the instructions given HERE

Evaluation criteria

Theoretical and applied knowledge of the techniques taught in the course; critical ability to select techniques based on the problem; ability to use the techniques taught in the course.

Criteria for the composition of the final grade

The final grade is represented by the arithmetic average of the grades of the two parts (RL / Advanced programming for AI) of the course.

Exam language

Inglese (English)

Sustainable Development Goals - SDGs

This initiative contributes to the achievement of the Sustainable Development Goals of the UN Agenda 2030. More information on sustainability

Type D and Type F activities

Type D learning activities are the student's choice, type F activities are additional knowledge useful for job placement (internships, transversal skills, project works, etc.). According to the Teaching Regulations of the Course, some activities can be chosen and entered independently in the booklet, others must be approved by a special committee to verify their consistency with the study plan. Type D or F learning activities can be covered by the following activities.

1. Modules taught at the University of Verona

Include the modules listed below and/or in the Course Catalogue (which can also be filtered by language of delivery via Advanced Search).

Booklet entry mode: if the teaching is included among those listed below, the student can enter it independently during the period in which the curriculum is open; otherwise, the student must make a request to the Secretariat, sending the form to carriere.scienze@ateneo.univr.it during the period indicated.

2. CLA certificate or language equivalency

In addition to those required by the curriculum/study plan, the following are recognized for those matriculated from A.Y. 2021/2022:

  • English language: 3 CFUs are recognized for each level of proficiency above that required by the course of study (if not already recognized in the previous course of study).
  • Other languages and Italian for foreigners: 3 CFUs are recognized for each proficiency level starting from A2 (if not already recognized in the previous study cycle).

These CFUs will be recognized, up to a maximum of 6 CFUs in total, of type F if the study plan allows it, or of type D. Additional elective credits for language knowledge may be recognized only if consistent with the student's educational project and if adequately justified.

Those enrolled until A.Y. 2020/2021 should consult the information found here.

Method of inclusion in the booklet: request the certificate or equivalency from CLA and send it to the Student Secretariat - Careers for the inclusion of the exam in the career, by email: carriere.scienze@ateneo.univr.it

3. Transversal skills

Discover the training paths promoted by the University's TALC - Teaching and learning center intended for students regularly enrolled in the academic year of course delivery https://talc.univr.it/it/competenze-trasversali

Mode of inclusion in the booklet: the teaching is not expected to be included in the curriculum. Only upon obtaining the Open Badge will the booklet CFUs be automatically validated. The registration of CFUs in career is not instantaneous, but there will be some technical time to wait.  

4. CONTAMINATION LAB 

The Contamination Lab Verona (CLab Verona) is an experiential course with modules on innovation and enterprise culture that offers the opportunity to work in teams with students from all areas to solve challenges set by companies and organisations.  

Upon completion of a CLab, students will be entitled to receive 6 CFU (D- or F-type credits).  

Find out more:  https://www.univr.it/clabverona 

PLEASE NOTE: In order to be admitted to any teaching activities, including those of your choice, you must be enrolled in the academic year in which the activities in question are offered. Students who are about to graduate in the December and April sessions are therefore advised NOT to undertake extracurricular activities in the new academic year in which they are not enrolled, as these graduation sessions are valid for students enrolled in the previous academic year. Therefore, students who undertake an activity in an academic year in which they are not enrolled will not be granted CFU credits.  

5. Internship/internship period

In addition to the CFUs stipulated in the curriculum/study plan (check carefully what is indicated on the Teaching Regulations): here information on how to activate the internship. 

Check in the regulations which activities can be Type D and which can be Type F.

Modules and other activities that can be entered independently in the booklet

Semester 1 From 10/2/23 To 1/26/24
years Modules TAF Teacher
1° 2° Introduction to smart contract programming for ethereum D Sara Migliorini (Coordinator)
Semester 2 From 3/4/24 To 6/14/24
years Modules TAF Teacher
1° 2° Python programming language D Carlo Combi (Coordinator)
1° 2° Programming Challanges D Romeo Rizzi (Coordinator)
List of courses with unassigned period
years Modules TAF Teacher
1° 2° Cooperative Game Theory in the (Deep) RL Era D Not yet assigned

Career prospects


Module/Programme news

News for students

There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details: only in this way will you be able to receive notification of all the notices from your teachers and your secretariat via email and also via the Univr app.

Career management


Attendance modes and venues

As stated in the Teaching Regulations, attendance at the course of study is not mandatory.

Part-time enrolment is permitted. Find out more on the Part-time enrolment possibilities page.

The course's teaching activities take place in the Science and Engineering area, which consists of the buildings of Ca‘ Vignal 1, Ca’ Vignal 2, Ca' Vignal 3 and Piramide, located in the Borgo Roma campus. 
Lectures are held in the classrooms of Ca‘ Vignal 1, Ca’ Vignal 2 and Ca' Vignal 3, while practical exercises take place in the teaching laboratories dedicated to the various activities.

 


Graduation

Deadlines and administrative fulfilments

For deadlines, administrative fulfilments and notices on graduation sessions, please refer to the Graduation Sessions - Science and Engineering service.

Need to activate a thesis internship

For thesis-related internships, it is not always necessary to activate an internship through the Internship Office. For further information, please consult the dedicated document, which can be found in the 'Documents' section of the Internships and work orientation - Science e Engineering service.

Final examination regulations

The teaching activities related to the preparation of the final exam for the achievement of the degree and its verification consist of the preparation and discussion of a written paper in English (dissertation) related to the in-depth study of a scientific theme addressed in the course of studies, i.e. related to the analysis and solution of a case study (theoretical and/or directly derived from a problem of an industrial nature) or related to a work of an experimental type, which can also be developed within an internship course carried out at research institutions, schools, laboratories, and companies, or by taking advantage of study stays in Italy and abroad, or the result of autonomous and original research work, with related aspects of mathematical formalization, computer design, business-oriented realization. These activities may be carried out under the guidance of a supervisor at a university facility, or even outside the University of Verona, both in Italy and abroad, as long as it is recognized and accepted for this purpose in accordance with the Didactic Regulations of the Master's Degree Course in Artificial Intelligence. The CFUs assigned to the final examination (evaluation of the thesis) are 18. The committee in charge of the evaluation of the final exam (dissertation in English) is called to express an assessment that takes into account the entire course of study, carefully evaluating the degree of coherence between educational and professional objectives, as well as the candidate's capacity for autonomous intellectual elaboration, critical sense, communication skills, and general cultural maturity, in relation to the objectives of the Master's Degree course in Artificial Intelligence, and particular, in relation to the themes characterizing the dissertation.

Students may take the final examination only after they have fulfilled all other educational obligations set forth in their study plan and fulfillments at the administrative offices in accordance with the deadlines indicated in the general study manifesto.

The final evaluation and proclamation will be made by the final exam committee appointed by the chairperson of the teaching committee and composed of a chairperson and at least four other commissioners chosen from the faculty of the University.

The material submitted for the final examination is evaluated by the Thesis Evaluation Committee, composed of three faculty members, including possibly the thesis advisor, and appointed by the chair of the teaching college. The Thesis Evaluation Committee formulates an evaluation of the work done and forwards it to the final examination committee, which will make the final judgment.

The teaching committee shall regulate the procedures of thesis evaluation committees, final examination committees, and the scoring of the final examination by special regulations passed by the teaching committee.


Student login and resources


Erasmus+ and other experiences abroad


Tutoring faculty members