## Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

## Academic calendar

The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.

## Course calendar

The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..

Period | From | To |
---|---|---|

Semester 1 | Oct 1, 2024 | Jan 31, 2025 |

Semester 2 | Mar 3, 2025 | Jun 13, 2025 |

Session | From | To |
---|---|---|

Winter exam session | Feb 3, 2025 | Feb 28, 2025 |

Summer exam session | Jun 16, 2025 | Jul 31, 2025 |

Autumn exam session | Sep 1, 2025 | Sep 30, 2025 |

Session | From | To |
---|---|---|

Sessione estiva | Jul 15, 2025 | Jul 15, 2025 |

Sessione autunnale | Oct 22, 2025 | Oct 22, 2025 |

December graduation session | Dec 11, 2025 | Dec 11, 2025 |

Sessione invernale | Mar 19, 2026 | Mar 19, 2026 |

Period | From | To |
---|---|---|

Tutti i Santi | Nov 1, 2024 | Nov 1, 2024 |

Festa dell'Immacolata | Dec 8, 2024 | Dec 8, 2024 |

Vacanze di Natale | Dec 23, 2024 | Jan 6, 2025 |

Vacanze di Pasqua | Apr 18, 2025 | Apr 21, 2025 |

Festa della Liberazione | Apr 25, 2025 | Apr 25, 2025 |

Festa del Lavoro | May 1, 2025 | May 1, 2025 |

Festa del Santo Patrono | May 21, 2025 | May 21, 2025 |

Festa della Repubblica | Jun 2, 2025 | Jun 2, 2025 |

Vacanze estive | Aug 11, 2025 | Aug 16, 2025 |

## Exam calendar

Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.

To view all the exam sessions available, please use the Exam dashboard on ESSE3.

If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.

## Academic staff

## Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.**Please select your Study Plan based on your enrollment year.**

1° Year

Modules | Credits | TAF | SSD |
---|

2° Year It will be activated in the A.Y. 2025/2026

Modules | Credits | TAF | SSD |
---|

3° Year It will be activated in the A.Y. 2026/2027

Modules | Credits | TAF | SSD |
---|

Modules | Credits | TAF | SSD |
---|

Modules | Credits | TAF | SSD |
---|

Modules | Credits | TAF | SSD |
---|

Modules | Credits | TAF | SSD |
---|

#### Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.

### Physics I with laboratory (2024/2025)

Teaching code

4S02750

Credits

12

Language

Italian

Scientific Disciplinary Sector (SSD)

FIS/01 - EXPERIMENTAL PHYSICS

Courses Single

Authorized

The teaching is organized as follows:

##### Teoria

##### Laboratorio [Laboratorio 1° turno]

##### Laboratorio [Laboratorio 2° turno]

##### Teoria di laboratorio

## Learning objectives

The teaching course of Physics I with Laboratory contributes to the achievement of the training objectives of the three years degree in Applied Mathematics by providing: - the basic elements of the scientific method, even with the help of laboratory experiments, in order to show that physics is a quantitative science based on the measurement of physical quantities; - the basic knowledge of classical mechanics (cinematics and dynamics) of the particle, of the particle systems and, partially, of the rigid body; - the guidelines useful for the resolution of exercises and problems of classical mechanics; achievement of the fundamental principles of thermodynamics, calorimetry and thermal conductivity. At the end of the course, the student must demonstrate : - to have adequate abilities to analyse and to abstract typical physical situations of the particle mechanics, of the particle systems, of the rigid body and of thermodynamics; - to be able to produce rigorous proofs, and mathematically formalize problems of the particle mechanics, of the particle systems, ; - to have the ability to build and develop mathematical models for physics and to analyse their application limits. - to be able to set up and perform some simple experiments for the measurement of various physical quantities and the subsequent representation (histograms and graphs) as well as the analysis of the collected data.

## Prerequisites and basic notions

The knowledge and mathematical skills typical of the training provided by the upper secondary school are required.

In particular:

- knowing how to classify a quantity as a scalar or vector quantity

- vector calculus: operations between vectors (sum, vector and scalar product), Cartesian representation and decomposition of vectors

- basic notions of trigonometry

- algebraic calculus (operations between monomials and polynomials, powers of polynomials, etc.) - methods of solving equations (and systems of equations) of first and second degree

- elements of differential calculus (derivative and integral operator)

- ability to represent data, relations and functions with formulas, tables, histograms, and / or graphs.

There are NO lessons dedicated to the mathematics topics listed above. Each student must, in case, provide through personal study. Some topics (in particular, vector calculus) will be recalled by the tutor.

NOTE: trigonometry and vector calculation reminder handouts will in any case be made available.

## Program

The teaching of PHYSICS I with Laboratory consists of two distinct modules: - Theory module (9 CFU) - Laboratory module (3 CFU)

THEORY MODULE

The THEORY module provides the basic knowledge of classical mechanics and thermodynamics, through derivation of the laws and principles governing the motion of bodies, as well as the elements useful for solving exercises and problems of kinematics and dynamics of the material point, systems of material points, as well as the laws and principles of thermodynamics and calorimetry. The main topics covered in this module are:

KINEMATICS

Kinematics of the material point. Displacement, speed and acceleration. One-dimensional motions. Reference systems. Motion in two and three dimensions (intrinsic and polar coordinate reference system). Transformations of Galileo and relative motions. Principle of classical relativity. Motion of projectiles. Circular motion.

DYNAMICS

Dynamics of the material point. Newton's laws and applications. Forces existing in nature. Periodic motions and oscillations: simple, forced and damped oscillator. Friction and resisting forces. Inertial and non-inertial systems. Apparent forces. momentum and momentum. Moment of a force. The momentum-momentum theorem. Central forces. Conservative force fields and potential energy. Work and Energy. Principle of conservation of mechanical energy. PARTICLEs SYSTEMS

Dynamics of systems of particles: cardinal equations of systems dynamics. Center of mass reference system. Koenig's theorems for kinetic energy and angular momentum. Newton's law of universal gravitation; the motion of satellites, Kepler's laws. The problem of the two bodies. Elastic and inelastic collisions. Conservation of momentum. Impact dynamics.Introduction to the dynamics of the rigid body.

FLUID MECHANICS

General information on fluids. Pressure. Pressure work in fluids. Stevin's law. Pascal's principle. Applications and examples.

Archimedes' principle.

Motion of a fluid in steady state: flow rate and Bernoulli's theorem. Applications and examples.

THERMODYNAMICS

Temperature and heat. Calorimetry: thermal equilibrium, thermal capacity and specific heats. Mechanical equivalent of calorie. Laws of ideal gases and kinetic theory. The principles of Thermodynamics. The thermodynamic transformations. Thermal and refrigerating machines.

LABORATORY MODULE The Laboratory module intends to provide the essential elements of the experimental method, demonstrating that physics is a quantitative science based on the measurement of physical quantities and on the evaluation of measurement uncertainties due to the resolution of the instrument and the presence of random errors. The main topics covered in this module are - the foundations of the experimental method - the theory of measurement errors - the analysis of experimental data relating to some simple experiments (such as the measurement with different length instruments, of the period of oscillation of a pendulum simple, the verification of the law of elastic elongation).

## Bibliography

## Didactic methods

The teaching methods of the teaching of Physics I with Laboratory are differentiated for the two modules.

THEORY MODULE

The Theory module is organized in theory lessons (7 credits of 8 hours) and exercises (2 credits of 12 hours).

To facilitate the student in understanding and learning the laws and principles dealt with, phenomenology will be systematically used during the lectures, also through the use of video-tutorials. The exercises are fundamental for the understanding and application of the laws and notions dealt with in the theory lessons. During the hours of practice, exercises and mechanical problems (kinematics and dynamics) will be solved in order to allow the student to face and pass the written test of the final exam. The hours of exercises will always follow the hours of theory trying to give a continuity of deepening and understanding of the various parts of the program.

Normally the lessons are held in the classroom using both the traditional blackboard and slides and / or texts. Short films, graphics, drawings and other useful material to facilitate the understanding of the topics covered will be used by the teacher. Students are expected to actively participate in the lessons through questions, discussion stimuli, requests for clarifications, as well as suggestions for solving the exercises.

In addition to this, there is a tutoring activity (extra hours) delivered frontally in the classroom and / or through video lessons, dedicated to reminders and complements as well as to the resolution of exercises and physics problems, in addition to the hours of practice by the professor.

LABORATORY MODULE

The Laboratory module is divided into a part of classroom lectures on the experimental method and on the theory of measurement errors (UL Theory of Laboratory) and a second part (UL Laboratory) of experiences carried out by students in the Cyber Physics Laboratory divided in two shifts for logistical reasons. Attendance is required for the latter. The laboratory sessions consist in the execution of simple experiments that involve the measurement of physical quantities, the representation and analysis of the collected data and the treatment of errors, as well as the elaboration of a report with the discussion of the results of the experiment carried out.

## Learning assessment procedures

The exam of the Physics I course with Laboratory consists in verifying the distinct knowledge for the two modules of Theory and Laboratory, for each of which an independent evaluation out of thirty is expressed, which will contribute to determining the overall grade according to the weight criterion. proportional to the number of credits of the relative module.

THEORY MODULE

The exam consists in passing a written test and an oral test, which can only be accessed after passing the written test. The written test is passed only if the reported grade is not less than 18/30. The examination procedures for the theory module are the same for attending and non-attending students. The written test is considered valid for two successive sessions, to allow the student to prepare and organize the oral test according to his own study program. In any case, the oral interview can only be taken after having successfully passed the Laboratory module.

LABORATORY MODULE

For the laboratory module, an ongoing group report and a final group report on the simple pendulum experiment will be evaluated. In addition, an individual test with multiple choice will be carried out at the end of the course which will evaluate the learning status of what has been done in the laboratory theory.

**Students with disabilities or specific learning disorders (SLD), who intend to request the adaptation of the exam, must follow the instructions given HERE**

## Evaluation criteria

The two exams, written and oral, are intended to ascertain the level of knowledge acquired by the student in relation to the Theory module of the teaching of Physics I with Laboratory. Written exam consists in solving some typical problems of mechanics (of the material point, of the systems of material points), which involve the application of laws and derived principles (stated and demonstrated) during the lectures and systematically recalled during the exercises in classroom. The oral exam consists of an interview with questions on the program carried out in the classroom relating to the derivation of physical laws and the demonstration of the theorems and conservation principles of the dynamics of the material point, systems of material points, and the laws and principles of thermodynamics. and calorimetry. For the laboratory part, the group report on the pendulum experience will be evaluated considering the skills acquired in terms of presentation of the experiment, representation and analysis of experimental data (through histograms, graphs, statistical functions, interpolations ...), discussion of the results with particular attention to random and systematic errors, as well as the critical comparison between different experimental procedures and measuring instruments. The individual test will verify the student's learning on the laboratory theory module (instruments and units of measurement, error theory, statistical data analysis).

## Criteria for the composition of the final grade

For the theory module there is a cumulative evaluation obtained by calculating the arithmetic average of the evaluations reported in the two exams, written and oral, passed. For the laboratory module there is a cumulative evaluation obtained by making the weighted average of the mark of the group report (2/3) and of the final individual test (1/3).

The overall evaluation of the exam of the course of Physics I with laboratory will result from the weighted average, on the number of CFU of the module, of the marks obtained in the evaluation tests provided for each of the two modules: Theory (9/12) and Laboratory (3 / 12).

## Exam language

italiano

## Type D and Type F activities

Le attività formative di tipologia D sono a scelta dello studente, quelle di tipologia F sono ulteriori conoscenze utili all’inserimento nel mondo del lavoro (tirocini, competenze trasversali, project works, ecc.). In base al Regolamento Didattico del Corso, alcune attività possono essere scelte e inserite autonomamente a libretto, altre devono essere approvate da apposita commissione per verificarne la coerenza con il piano di studio. Le attività formative di tipologia D o F possono essere ricoperte dalle seguenti attività.

#### 1. Insegnamenti impartiti presso l'Università di Verona

Comprendono gli insegnamenti sotto riportati e/o nel Catalogo degli insegnamenti (che può essere filtrato anche per lingua di erogazione tramite la Ricerca avanzata).

**Modalità di inserimento a libretto**: se l'insegnamento è compreso tra quelli sottoelencati, lo studente può inserirlo autonomamente durante il periodo in cui il piano di studi è aperto; in caso contrario, lo studente deve fare richiesta alla Segreteria, inviando a carriere.scienze@ateneo.univr.it il modulo nel periodo indicato.

#### 2. Attestato o equipollenza linguistica CLA

Oltre a quelle richieste dal piano di studi, per gli **immatricolati dall'A.A. 2021/2022** vengono riconosciute:

- Lingua inglese: vengono riconosciuti 3 CFU per ogni livello di competenza superiore a quello richiesto dal corso di studio (se non già riconosciuto nel ciclo di studi precedente).
- Altre lingue e italiano per stranieri: vengono riconosciuti 3 CFU per ogni livello di competenza a partire da A2 (se non già riconosciuto nel ciclo di studi precedente).

Tali cfu saranno riconosciuti, fino ad un massimo di 6 cfu complessivi, di tipologia F se il piano didattico lo consente, oppure di tipologia D. Ulteriori crediti a scelta per conoscenze linguistiche potranno essere riconosciuti __solo se coerenti con il progetto formativo dello studente e se adeguatamente motivati__.

Gli **immatricolati fino all'A.A. 2020/2021** devono consultare le informazioni che si trovano qui.

**Modalità di inserimento a libretto**: richiedere l’attestato o l'equipollenza al CLA e inviarlo alla Segreteria Studenti - Carriere per l’inserimento dell’esame in carriera, tramite mail: carriere.scienze@ateneo.univr.it

#### 3. Competenze trasversali

Scopri i percorsi formativi promossi dal TALC - Teaching and learning center dell'Ateneo, destinati agli studenti regolarmente iscritti all'anno accademico di erogazione del corso https://talc.univr.it/it/competenze-trasversali

**Modalità di inserimento a libretto**: non è previsto l'inserimento dell'insegnamento nel piano di studi. Solo in seguito all'ottenimento dell'Open Badge verranno automaticamente convalidati i CFU a libretto. La registrazione dei CFU in carriera non è istantanea, ma ci saranno da attendere dei tempi tecnici.

#### 4. Contamination lab

Il Contamination Lab Verona (CLab Verona) è un percorso esperienziale con moduli dedicati all'innovazione e alla cultura d'impresa che offre la possibilità di lavorare in team con studenti e studentesse di tutti i corsi di studio per risolvere sfide lanciate da aziende ed enti. Il percorso permette di ricevere 6 CFU in ambito D o F. Scopri le sfide: https://www.univr.it/clabverona

**ATTENZIONE**: Per essere ammessi a sostenere una qualsiasi attività didattica, incluse quelle a scelta, è necessario essere iscritti all'anno di corso in cui essa viene offerta. Si raccomanda, pertanto, ai laureandi delle sessioni di dicembre e aprile di NON svolgere attività extracurriculari del nuovo anno accademico, cui loro non risultano iscritti, essendo tali sessioni di laurea con validità riferita all'anno accademico precedente. Quindi, per attività svolte in un anno accademico cui non si è iscritti, non si potrà dar luogo a riconoscimento di CFU.

#### 5. Periodo di stage/tirocinio

Oltre ai CFU previsti dal piano di studi (**verificare attentamente quanto indicato sul Regolamento Didattico**) qui si possono trovare le informazioni su come attivare lo stage.

Verificare nel regolamento quali attività possono essere di tipologia D e quali di tipologia F.

Si ricorda, inoltre, che per i tirocini attivati dal 1 ottobre 2024 sarà possibile riconoscere le ore eccedenti in termini di crediti di tipologia D, __limitatamente alle sole esperienze di tirocinio svolte presso enti ospitanti esterni all’Ateneo.__

**Modules not yet included**

## Career prospects

## Module/Programme news

##### News for students

There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details: only in this way will you be able to receive notification of all the notices from your teachers and your secretariat via email and also via the Univr app.

## Graduation

## Documents

Title | Info File |
---|---|

1. Come scrivere una tesi | pdf, it, 31 KB, 29/07/21 |

2. How to write a thesis | pdf, it, 31 KB, 29/07/21 |

5. Regolamento tesi | pdf, it, 171 KB, 20/03/24 |

## List of thesis proposals

theses proposals | Research area |
---|---|

Formule di rappresentazione per gradienti generalizzati | Mathematics - Analysis |

Formule di rappresentazione per gradienti generalizzati | Mathematics - Mathematics |

Proposte Tesi A. Gnoatto | Various topics |

Mathematics Bachelor and Master thesis titles | Various topics |

THESIS_1: Sensors and Actuators for Applications in Micro-Robotics and Robotic Surgery | Various topics |

THESIS_2: Force Feedback and Haptics in the Da Vinci Robot: study, analysis, and future perspectives | Various topics |

THESIS_3: Cable-Driven Systems in the Da Vinci Robotic Tools: study, analysis and optimization | Various topics |

## Attendance modes and venues

As stated in the Teaching Regulations , except for specific practical or lab activities, attendance is not mandatory. Regarding these activities, please see the web page of each module for information on the number of hours that must be attended on-site.

Part-time enrolment is permitted. Find out more on the Part-time enrolment possibilities page.

The course's teaching activities take place in the Science and Engineering area, which consists of the buildings of Ca‘ Vignal 1, Ca’ Vignal 2, Ca' Vignal 3 and Piramide, located in the Borgo Roma campus.

Lectures are held in the classrooms of Ca‘ Vignal 1, Ca’ Vignal 2 and Ca' Vignal 3, while practical exercises take place in the teaching laboratories dedicated to the various activities.

## Career management

## Student login and resources

## Erasmus+ and other experiences abroad

## Ongoing orientation for students

The committee has the task of guiding the students throughout their studies, guiding them in their choice of educational pathways, making them active participants in the educational process and helping to overcome any individual difficulties.

It is composed of professors Sisto Baldo, Marco Caliari, Francesca Mantese, Giandomenico Orlandi and Nicola Sansonetto