Studying at the University of Verona
Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.
Academic calendar
The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.
Course calendar
The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..
Period | From | To |
---|---|---|
Semester 1 | Oct 1, 2024 | Jan 31, 2025 |
Semester 2 | Mar 3, 2025 | Jun 13, 2025 |
Session | From | To |
---|---|---|
Winter exam session | Feb 3, 2025 | Feb 28, 2025 |
Summer exam session | Jun 16, 2025 | Jul 31, 2025 |
Autumn exam session | Sep 1, 2025 | Sep 30, 2025 |
Session | From | To |
---|---|---|
Sessione di laurea estiva | Jul 10, 2025 | Jul 10, 2025 |
Sessione di laurea autunnale | Oct 17, 2025 | Oct 17, 2025 |
Sessione di laurea autunnale (dicembre) | Dec 10, 2025 | Dec 10, 2025 |
Sessione di laurea invernale | Mar 18, 2026 | Mar 18, 2026 |
Period | From | To |
---|---|---|
Tutti i Santi | Nov 1, 2024 | Nov 1, 2024 |
Festa dell'Immacolata | Dec 8, 2024 | Dec 8, 2024 |
Vacanze di Natale | Dec 23, 2024 | Jan 6, 2025 |
Vacanze di Pasqua | Apr 18, 2025 | Apr 21, 2025 |
Festa della Liberazione | Apr 25, 2025 | Apr 25, 2025 |
Festa del Lavoro | May 1, 2025 | May 1, 2025 |
Festa del Santo Patrono | May 21, 2025 | May 21, 2025 |
Festa della Repubblica | Jun 2, 2025 | Jun 2, 2025 |
Vacanze estive | Aug 11, 2025 | Aug 16, 2025 |
Exam calendar
Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.
Academic staff
Study Plan
The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.
1° Year
Modules | Credits | TAF | SSD |
---|
Algebra and Foundations of Mathematics
Mathematical analysis
2° Year It will be activated in the A.Y. 2025/2026
Modules | Credits | TAF | SSD |
---|
3° Year It will be activated in the A.Y. 2026/2027
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Algebra and Foundations of Mathematics
Mathematical analysis
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Legend | Type of training activity (TTA)
TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.
Programming I [Matricole dispari] (2024/2025)
Teaching code
4S02723
Credits
12
Language
Italian
Scientific Disciplinary Sector (SSD)
INF/01 - INFORMATICS
Courses Single
Authorized
The teaching is organized as follows:
Laboratorio 1
Esercitazioni 1
Teoria
Laboratorio 2
Esercitazioni 2
Learning objectives
This course provides students with the basic ability needed to write programs in an imperative lan- guage of procedural nature (e.g., C), with particular emphasis on the relationship between the pro- gramming language and the underlying hardware machine, on the concept of recursion, and on the implementation of simple data structures, both recursive and non-recursive. At the end of the course, the student will have to demonstrate to own knowledge and comprehension ability on the concepts at the basis of programming through an imperative language of procedural nature; organization ability, implementation and translation on that language, and analysis through de bugging of algorithms and of the corresponding data structures starting from specifications; to be able to develop know-how necessary to continue the study autonomously in the field of programming and Software development.
Prerequisites and basic notions
No prerequisites
Program
Theory:
------------
• Introduction.
• Fundamental concepts: programming, high-level languages, operating systems, program compiling.
• Compiling and execution of the first program: first program compiling, first program execution, first program description, variable visualization, comments.
• Variables, data types and arithmetic expressions: operating with variables, data types and constants, operating with arithmetic expressions, combining operations with assignment – assignment operators.
• Iteration: for instruction, while instruction, do instruction.
• Taking decisions: if instruction, switch instruction, Boolean variables, conditional statement.
• Statements with arrays: array definition, array initialization, arrays of chars, multidimensional arrays.
• Functions: function definition, arguments and local variables, returning results of a function, functions that call functions that calling functions…, top-down programming, functions and arrays, global variables, automatic and static variables, recursive functions.
• Structures: a structure for data storing, functions and structures, structure initialization, array of structures, structures containing structures, structures containing arrays, variants of structures.
• Strings of chars: arrays of chars, strings of chars of variable length, escape sequences, other information of constant strings, char strings, structures and arrays, operations with chars.
• Pointers: pointer definition, using pointers in expressions, pointers and structures, pointers and functions, pointers and arrays, operations on pointers, pointers and memory addresses.
• The preprocessing: #define directive, #include directive, conditional compiling.
• Input/Output operations: I/O of chars – getchar and putchar, printf and scanf
• Advanced characteristics: dynamic memory allocation.
Laboratory:
-----------------
• Introduction, file system, bash, editor.
• Practical programming in lab by applying all the arguments explained in the theory part: examples, exercises.
• Code debugging: gdb, ddd, and CodeBlocks.
Bibliography
Didactic methods
In-person classes and practical sessions in lab
Learning assessment procedures
The exam, unified with the Laboratory module, consists in two parts, that will take place around February (first part) and June (second part). The final global mark will be the composition (average) of the marks of the two parts. Students who do not pass these partial exams can try again in the normal 4 examinations scattered around the year, starting from June. Those exams are on the total program of the course.
The exams (partial as well as total) verify the ability in writing simple programs to the computer, in lab.
Evaluation criteria
To pass the exam, the students have to show:
- they have understood the principles related to the programming in C language .
- they are able to develop C code and to analyze its correctness and problems through debugging
- they are able to apply the acquired knowledge to implement algorithms in C code by starting from specifications given as exercises.
The emphasis in the evaluation will be given to the ability to organize algorithms and data structures and to translate them into the C language.
Each test will assign at maximum 33 points.
Criteria for the composition of the final grade
The final global mark will be the average of the marks of the marks obtained in the two partial parts or the mark obtained during a regular exam session.
Exam language
Italiano
Type D and Type F activities
Type D learning activities are the student's choice, type F activities are additional knowledge useful for job placement (internships, transversal skills, project works, etc.). According to the Teaching Regulations of the Course, some activities can be chosen and entered independently in the booklet, others must be approved by a special committee to verify their consistency with the study plan. Type D or F learning activities can be covered by the following activities.
1. Modules taught at the University of Verona
Include the modules listed below and/or in the Course Catalogue (which can also be filtered by language of delivery via Advanced Search).
Booklet entry mode: if the teaching is included among those listed below, the student can enter it independently during the period in which the curriculum is open; otherwise, the student must make a request to the Secretariat, sending the form to carriere.scienze@ateneo.univr.it during the period indicated.
2. CLA certificate or language equivalency
In addition to those required by the curriculum/study plan, the following are recognized for those matriculated from A.Y. 2021/2022:
- English language: 3 CFUs are recognized for each level of proficiency above that required by the course of study (if not already recognized in the previous course of study).
- Other languages and Italian for foreigners: 3 CFUs are recognized for each proficiency level starting from A2 (if not already recognized in the previous study cycle).
These CFUs will be recognized, up to a maximum of 6 CFUs in total, of type F if the study plan allows it or of type D. Additional elective credits for language knowledge may be recognized only if consistent with the student's educational project and if adequately justified.
Those enrolled until A.Y. 2020/2021 should consult the information found here.
Method of inclusion in the booklet: request the certificate or equivalency from CLA and send it to the Student Secretariat - Careers for the inclusion of the exam in the career, by email: carriere.scienze@ateneo.univr.it
3. Transversal skills
Discover the training paths promoted by the University's TALC - Teaching and learning center intended for students regularly enrolled in the academic year of course delivery https://talc.univr.it/it/competenze-trasversali
Mode of inclusion in the booklet: the teaching is not expected to be included in the curriculum. Only upon obtaining the Open Badge will the booklet CFUs be automatically validated. The registration of CFUs in career is not instantaneous, but there will be some technical time to wait.
4. Contamination lab
The Contamination Lab Verona (CLab Verona) is an experiential course with modules on innovation and enterprise culture that offers the opportunity to work in teams with students from all areas to solve challenges set by companies and organisations.
Upon completion of a CLab, students will be entitled to receive 6 CFU (D- or F-type credits).
Find out more: https://www.univr.it/clabverona
PLEASE NOTE: In order to be admitted to any teaching activities, including those of your choice, you must be enrolled in the academic year in which the activities in question are offered. Students who are about to graduate in the December and April sessions are therefore advised NOT to undertake extracurricular activities in the new academic year in which they are not enrolled, as these graduation sessions are valid for students enrolled in the previous academic year. Therefore, students who undertake an activity in an academic year in which they are not enrolled will not be granted CFU credits.
5. Internship/internship period
In addition to the CFUs stipulated in the curriculum/study plan (check carefully what is indicated on the Teaching Regulations) here you can find information on how to activate the internship.
Check the regulations to see which activities can be Type D and which can be Type F.
Please also note that for traineeships activated after 1 October 2024, it will be possible to recognise excess hours in terms of type D credits limited only to traineeship experiences carried out at host organisations outside the University.
years | Modules | TAF | Teacher |
---|---|---|---|
2° 3° | Attention Laboratory | D |
Pietro Sala
(Coordinator)
|
2° 3° | Elements of Cosmology and General Relativity | D |
Claudia Daffara
(Coordinator)
|
2° 3° | Introduction to quantum mechanics for quantum computing | D |
Claudia Daffara
(Coordinator)
|
2° 3° | Introduction to smart contract programming for ethereum | D |
Sara Migliorini
(Coordinator)
|
2° 3° | BEYOND ARDUINO: FROM PROTOTYPE TO PRODUCT WITH STM MICROCONTROLLER | D |
Franco Fummi
(Coordinator)
|
2° 3° | APP REACT PLANNING | D |
Graziano Pravadelli
(Coordinator)
|
2° 3° | HW components design on FPGA | D |
Franco Fummi
(Coordinator)
|
2° 3° | Tools for development of applications of virtual reality and mixed | D |
Andrea Giachetti
(Coordinator)
|
years | Modules | TAF | Teacher |
---|---|---|---|
2° 3° | Attention Laboratory | D |
Pietro Sala
(Coordinator)
|
2° 3° | LaTeX Language | D |
Enrico Gregorio
(Coordinator)
|
2° 3° | Python programming language | D |
Carlo Combi
(Coordinator)
|
2° 3° | Rapid prototyping on Arduino | D |
Franco Fummi
(Coordinator)
|
2° 3° | Programming Challanges | D |
Romeo Rizzi
(Coordinator)
|
2° 3° | Development and life cycle of software of artificial intelligence software | D |
Marco Cristani
(Coordinator)
|
2° 3° | Protection of intangible assets (SW and invention)between industrial law and copyright | D |
Mila Dalla Preda
(Coordinator)
|
years | Modules | TAF | Teacher |
---|---|---|---|
1° | Subject requirements: mathematics | D |
Franco Zivcovich
(Coordinator)
|
Career prospects
Module/Programme news
News for students
There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details: only in this way will you be able to receive notification of all the notices from your teachers and your secretariat via email and also via the Univr app.
Graduation
List of thesis proposals
theses proposals | Research area |
---|---|
Analisi e percezione dei segnali biometrici per l'interazione con robot | AI, Robotics & Automatic Control - AI, Robotics & Automatic Control |
Integrazione del simulatore del robot Nao con Oculus Rift | AI, Robotics & Automatic Control - AI, Robotics & Automatic Control |
Domain Adaptation | Computer Science and Informatics: Informatics and information systems, computer science, scientific computing, intelligent systems - Computer graphics, computer vision, multi media, computer games |
Domain Adaptation | Computer Science and Informatics: Informatics and information systems, computer science, scientific computing, intelligent systems - Machine learning, statistical data processing and applications using signal processing (e.g. speech, image, video) |
BS or MS theses in automated reasoning | Computing Methodologies - ARTIFICIAL INTELLIGENCE |
Domain Adaptation | Computing Methodologies - IMAGE PROCESSING AND COMPUTER VISION |
Domain Adaptation | Computing methodologies - Machine learning |
Dati geografici | Information Systems - INFORMATION SYSTEMS APPLICATIONS |
Analisi e percezione dei segnali biometrici per l'interazione con robot | Robotics - Robotics |
Integrazione del simulatore del robot Nao con Oculus Rift | Robotics - Robotics |
BS or MS theses in automated reasoning | Theory of computation - Logic |
BS or MS theses in automated reasoning | Theory of computation - Semantics and reasoning |
Proposte di tesi/collaborazione/stage in Intelligenza Artificiale Applicata | Various topics |
Proposte di Tesi/Stage/Progetto nell'ambito dell'analisi dei dati | Various topics |
Attendance modes and venues
As stated in the Teaching Regulations, attendance at the course of study is not mandatory.
Part-time enrolment is permitted. Find out more on the Part-time enrolment possibilities page.
The course's teaching activities take place in the Science and Engineering area, which consists of the buildings of Ca‘ Vignal 1, Ca’ Vignal 2, Ca' Vignal 3 and Piramide, located in the Borgo Roma campus.
Lectures are held in the classrooms of Ca‘ Vignal 1, Ca’ Vignal 2 and Ca' Vignal 3, while practical exercises take place in the teaching laboratories dedicated to the various activities.